These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 7897401)
41. Effects of a spider toxin and its analogue on glutamate-activated currents in the hippocampal CA1 neuron after ischemia. Tsubokawa H; Oguro K; Masuzawa T; Nakaima T; Kawai N J Neurophysiol; 1995 Jul; 74(1):218-25. PubMed ID: 7472325 [TBL] [Abstract][Full Text] [Related]
42. Ischemia as an excitotoxic lesion: protection against hippocampal nerve cell loss by denervation. Diemer NH; Johansen FF; Benveniste H; Bruhn T; Berg M; Valente E; Jørgensen MB Acta Neurochir Suppl (Wien); 1993; 57():94-101. PubMed ID: 8380675 [TBL] [Abstract][Full Text] [Related]
43. N-methyl-D-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate early gene expression in cultured hippocampal neurons. Bading H; Segal MM; Sucher NJ; Dudek H; Lipton SA; Greenberg ME Neuroscience; 1995 Feb; 64(3):653-64. PubMed ID: 7715778 [TBL] [Abstract][Full Text] [Related]
44. The human immunodeficiency virus type-1 transcription factor Tat produces elevations in intracellular Ca2+ that require function of an N-methyl-D-aspartate receptor polyamine-sensitive site. Self RL; Mulholland PJ; Nath A; Harris BR; Prendergast MA Brain Res; 2004 Jan; 995(1):39-45. PubMed ID: 14644469 [TBL] [Abstract][Full Text] [Related]
45. Intracellular acidification induced by membrane depolarization in rat hippocampal slices: roles of intracellular Ca2+ and glycolysis. Zhan RZ; Fujiwara N; Tanaka E; Shimoji K Brain Res; 1998 Jan; 780(1):86-94. PubMed ID: 9473603 [TBL] [Abstract][Full Text] [Related]
46. Modulation of nerve and glial function by adenosine--role in the development of ischemic damage. Schubert P; Rudolphi KA; Fredholm BB; Nakamura Y Int J Biochem; 1994; 26(10-11):1227-36. PubMed ID: 7531656 [TBL] [Abstract][Full Text] [Related]
47. Intraneuronal [Ca2+] changes induced by 2-deoxy-D-glucose in rat hippocampal slices. Tekkök S; Medina I; Krnjević K J Neurophysiol; 1999 Jan; 81(1):174-83. PubMed ID: 9914278 [TBL] [Abstract][Full Text] [Related]
48. Neural activity and intracellular Ca2+ mobilization in the CA1 area of hippocampal slices from immature and mature rats during ischemia or glucose deprivation. Nabetani M; Okada Y; Takata T; Takada S; Nakamura H Brain Res; 1997 Sep; 769(1):158-62. PubMed ID: 9374284 [TBL] [Abstract][Full Text] [Related]
49. Functional changes of N-methyl-D-aspartic acid and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate channels in gerbil hippocampal CA1, in relation to postischemic enhancement of glutamate receptor-mediated responses. Ikemune K; Mitani A; Namba S; Kataoka K; Arai T Neurosci Lett; 1999 Nov; 275(2):125-8. PubMed ID: 10568515 [TBL] [Abstract][Full Text] [Related]
50. Effects of glutamate receptor agonists and antagonists on Ca2+ uptake in rat hippocampal slices lesioned by glucose deprivation or by kainate. Alici K; Gloveli T; Schmitz D; Heinemann U Neuroscience; 1997 Mar; 77(1):97-109. PubMed ID: 9044378 [TBL] [Abstract][Full Text] [Related]
51. Adenosine receptor blockade reveals N-methyl-D-aspartate receptor- and voltage-sensitive dendritic spikes in rat hippocampal CA1 pyramidal cells in vitro. Li H; Henry JL Neuroscience; 2000; 100(1):21-31. PubMed ID: 10996455 [TBL] [Abstract][Full Text] [Related]
52. NMDA receptor-mediated differential laminar susceptibility to the intracellular Ca2+ accumulation induced by oxygen-glucose deprivation in rat neocortical slices. Fukuda A; Muramatsu K; Okabe A; Shimano Y; Hida H; Fujimoto I; Nishino H J Neurophysiol; 1998 Jan; 79(1):430-8. PubMed ID: 9425211 [TBL] [Abstract][Full Text] [Related]
53. Induction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca2+ influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores. Wang Y; Rowan MJ; Anwyl R J Neurophysiol; 1997 Feb; 77(2):812-25. PubMed ID: 9065852 [TBL] [Abstract][Full Text] [Related]
54. Kainate-induced inactivation of NMDA currents via an elevation of intracellular Ca2+ in hippocampal neurons. Medina I; Filippova N; Barbin G; Ben-Ari Y; Bregestovski P J Neurophysiol; 1994 Jul; 72(1):456-65. PubMed ID: 7965027 [TBL] [Abstract][Full Text] [Related]
55. Mechanisms of intracellular calcium accumulation in the CA1 region of rat hippocampus during anoxia in vitro. Lipton P; Lobner D Stroke; 1990 Nov; 21(11 Suppl):III60-4. PubMed ID: 2146781 [TBL] [Abstract][Full Text] [Related]
56. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. Garaschuk O; Yaari Y; Konnerth A J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194 [TBL] [Abstract][Full Text] [Related]
57. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. Silver IA; Erecińska M J Gen Physiol; 1990 May; 95(5):837-66. PubMed ID: 2163431 [TBL] [Abstract][Full Text] [Related]
58. Loperamide blocks high-voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons. Church J; Fletcher EJ; Abdel-Hamid K; MacDonald JF Mol Pharmacol; 1994 Apr; 45(4):747-57. PubMed ID: 8183255 [TBL] [Abstract][Full Text] [Related]
59. A role for N-methyl-D-aspartate receptors in norepinephrine-induced long-lasting potentiation in the dentate gyrus. Stanton PK; Mody I; Heinemann U Exp Brain Res; 1989; 77(3):517-30. PubMed ID: 2572445 [TBL] [Abstract][Full Text] [Related]
60. Neuroprotective mechanism of (+)SKF 10,047 in vitro and in gerbil global brain ischemia. Lysko PG; Yue TL; Gu JL; Feuerstein G Stroke; 1992 Sep; 23(9):1319-23; discussion 1324. PubMed ID: 1519289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]