These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 7897401)
61. Pharmacological properties of excitatory amino acid induced changes in extracellular calcium concentration in rat hippocampal slices. Arens J; Stabel J; Heinemann U Can J Physiol Pharmacol; 1992; 70 Suppl():S194-205. PubMed ID: 1295671 [TBL] [Abstract][Full Text] [Related]
62. Astrocytic control of synaptic NMDA receptors. Lee CJ; Mannaioni G; Yuan H; Woo DH; Gingrich MB; Traynelis SF J Physiol; 2007 Jun; 581(Pt 3):1057-81. PubMed ID: 17412766 [TBL] [Abstract][Full Text] [Related]
63. Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. Berg M; Bruhn T; Frandsen A; Schousboe A; Diemer NH J Neurosci Res; 1995 Apr; 40(5):641-6. PubMed ID: 7602615 [TBL] [Abstract][Full Text] [Related]
64. Differential role of two Ca(2+)-permeable non-NMDA glutamate channels in rat retinal ganglion cells: kainate-induced cytoplasmic and nuclear Ca2+ signals. Leinders-Zufall T; Rand MN; Waxman SG; Kocsis JD J Neurophysiol; 1994 Nov; 72(5):2503-16. PubMed ID: 7884475 [TBL] [Abstract][Full Text] [Related]
65. Calcium influx through NMDA receptors, chronic receptor inhibition by ethanol and 2-amino-5-phosponopentanoic acid, and receptor protein expression. Chen X; Moore-Nichols D; Nguyen H; Michaelis EK J Neurochem; 1999 May; 72(5):1969-80. PubMed ID: 10217274 [TBL] [Abstract][Full Text] [Related]
66. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices. Pozzo-Miller LD; Inoue T; Murphy DD J Neurophysiol; 1999 Mar; 81(3):1404-11. PubMed ID: 10085365 [TBL] [Abstract][Full Text] [Related]
67. Cellular regulation of the benzodiazepine/GABA receptor: arachidonic acid, calcium, and cerebral ischemia. Schwartz RD; Yu X; Wagner J; Ehrmann M; Mileson BE Neuropsychopharmacology; 1992 Feb; 6(2):119-25. PubMed ID: 1319167 [TBL] [Abstract][Full Text] [Related]
68. Interaction of calcium-permeable non-N-methyl-D-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro. Taschenberger H; Grantyn R Neuroscience; 1998 Jun; 84(3):877-96. PubMed ID: 9579791 [TBL] [Abstract][Full Text] [Related]
69. Mouse hippocampal organotypic tissue cultures exposed to in vitro "ischemia" show selective and delayed CA1 damage that is aggravated by glucose. Rytter A; Cronberg T; Asztély F; Nemali S; Wieloch T J Cereb Blood Flow Metab; 2003 Jan; 23(1):23-33. PubMed ID: 12500088 [TBL] [Abstract][Full Text] [Related]
70. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Rossi DJ; Oshima T; Attwell D Nature; 2000 Jan; 403(6767):316-21. PubMed ID: 10659851 [TBL] [Abstract][Full Text] [Related]
72. Exposure to N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Sanfeliu C; Hunt A; Patel AJ Brain Res; 1990 Sep; 526(2):241-8. PubMed ID: 2124161 [TBL] [Abstract][Full Text] [Related]
73. Intracellular calcium and cell death during ischemia in neonatal rat white matter astrocytes in situ. Fern R J Neurosci; 1998 Sep; 18(18):7232-43. PubMed ID: 9736645 [TBL] [Abstract][Full Text] [Related]
74. Activation of neurotransmitter release in hippocampal nerve terminals during recovery from intracellular acidification. Trudeau LE; Parpura V; Haydon PG J Neurophysiol; 1999 Jun; 81(6):2627-35. PubMed ID: 10368383 [TBL] [Abstract][Full Text] [Related]
75. N-methyl-D-aspartate receptors enhance mechanical responses and voltage-dependent Ca2+ channels in rat dorsal root ganglia neurons through protein kinase C. Chaban VV; Li J; Ennes HS; Nie J; Mayer EA; McRoberts JA Neuroscience; 2004; 128(2):347-57. PubMed ID: 15350646 [TBL] [Abstract][Full Text] [Related]
76. Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. Garaschuk O; Schneggenburger R; Schirra C; Tempia F; Konnerth A J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):757-72. PubMed ID: 8815209 [TBL] [Abstract][Full Text] [Related]
77. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage. Bickler PE; Hansen BM Brain Res; 1994 Dec; 665(2):269-76. PubMed ID: 7534604 [TBL] [Abstract][Full Text] [Related]
78. Hippocampal neurons exhibit both persistent Ca2+ influx and impairment of Ca2+ sequestration/extrusion mechanisms following excitotoxic glutamate exposure. Limbrick DD; Pal S; DeLorenzo RJ Brain Res; 2001 Mar; 894(1):56-67. PubMed ID: 11245815 [TBL] [Abstract][Full Text] [Related]
79. Cytosolic Ca2+ changes during in vitro ischemia in rat hippocampal slices: major roles for glutamate and Na+-dependent Ca2+ release from mitochondria. Zhang Y; Lipton P J Neurosci; 1999 May; 19(9):3307-15. PubMed ID: 10212290 [TBL] [Abstract][Full Text] [Related]
80. Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons. Tanaka E; Yamamoto S; Inokuchi H; Isagai T; Higashi H J Neurophysiol; 1999 Apr; 81(4):1872-80. PubMed ID: 10200222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]