BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

625 related articles for article (PubMed ID: 7897500)

  • 1. Spatiotemporal response properties of direction-selective neurons in the nucleus of the optic tract and dorsal terminal nucleus of the wallaby, Macropus eugenii.
    Ibbotson MR; Mark RF; Maddess TL
    J Neurophysiol; 1994 Dec; 72(6):2927-43. PubMed ID: 7897500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direction-selective neurons in the optokinetic system with long-lasting after-responses.
    Price NS; Ibbotson MR
    J Neurophysiol; 2002 Nov; 88(5):2224-31. PubMed ID: 12424264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impulse responses distinguish two classes of directional motion-sensitive neurons in the nucleus of the optic tract.
    Ibbotson MR; Mark RF
    J Neurophysiol; 1996 Mar; 75(3):996-1007. PubMed ID: 8867112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual receptive field properties in kitten pretectal nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract.
    Distler C; Hoffmann KP
    J Neurophysiol; 1993 Aug; 70(2):814-27. PubMed ID: 8410174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-field nondirectional visual units in the pretectum: do they suppress ocular following of saccade-induced visual stimulation.
    Ibbotson MR; Mark RF
    J Neurophysiol; 1994 Sep; 72(3):1448-50. PubMed ID: 7807228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations into the source of binocular input to the nucleus of the optic tract in an Australian marsupial, the wallaby Macropus eugenii.
    Ibbotson MR; Marotte LR; Mark RF
    Exp Brain Res; 2002 Nov; 147(1):80-8. PubMed ID: 12373372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons.
    Wylie DR; Crowder NA
    J Neurophysiol; 2000 Nov; 84(5):2529-40. PubMed ID: 11067995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretectal neurons optimized for the detection of saccade-like movements of the visual image.
    Price NS; Ibbotson MR
    J Neurophysiol; 2001 Apr; 85(4):1512-21. PubMed ID: 11287475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural and behavioral effects of early eye rotation on the optokinetic system in the wallaby, Macropus eugenii.
    Hoffmann KP; Distler C; Mark RF; Marotte LR; Henry GH; Ibbotson MR
    J Neurophysiol; 1995 Feb; 73(2):727-35. PubMed ID: 7760131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal slip neurons in the nucleus of the optic tract and dorsal terminal nucleus in cats with congenital strabismus.
    Distler C; Hoffmann KP
    J Neurophysiol; 1996 Apr; 75(4):1483-94. PubMed ID: 8727392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrast and temporal frequency-related adaptation in the pretectal nucleus of the optic tract.
    Ibbotson MR
    J Neurophysiol; 2005 Jul; 94(1):136-46. PubMed ID: 15728765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation and spatiotemporal tuning of cells in the primary visual cortex of an Australian marsupial, the wallaby Macropus eugenii.
    Ibbotson MR; Mark RF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):115-23. PubMed ID: 12607040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey.
    Ilg UJ; Hoffmann KP
    Eur J Neurosci; 1996 Jan; 8(1):92-105. PubMed ID: 8713453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to visual motion in directional neurons of the nucleus of the optic tract.
    Ibbotson MR; Clifford CW; Mark RF
    J Neurophysiol; 1998 Mar; 79(3):1481-93. PubMed ID: 9497426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal frequency and velocity-like tuning in the pigeon accessory optic system.
    Crowder NA; Dawson MR; Wylie DR
    J Neurophysiol; 2003 Sep; 90(3):1829-41. PubMed ID: 12750415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey's nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract.
    Hoffmann KP; Distler C; Ilg U
    J Comp Neurol; 1992 Jul; 321(1):150-62. PubMed ID: 1377205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey.
    Hoffmann KP; Distler C
    J Neurophysiol; 1989 Aug; 62(2):416-28. PubMed ID: 2769338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quadratic nonlinearity underlies direction selectivity in the nucleus of the optic tract.
    Ibbotson MR; Clifford CW; Mark RF
    Vis Neurosci; 1999; 16(6):991-1000. PubMed ID: 10614582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual responses of neurons in the nucleus of the basal optic root to stationary stimuli in pigeons.
    Gu Y; Wang Y; Wang SR
    J Neurosci Res; 2002 Mar; 67(5):698-704. PubMed ID: 11891782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretectal neurons responding to slow wide-field retinal motion: could they compensate for slow drift during fixation?
    Price NS; Ibbotson MR
    Clin Exp Ophthalmol; 2001 Jun; 29(3):201-5. PubMed ID: 11446469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.