BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7898457)

  • 1. ADP-ribosylation of the molecular chaperone GRP78/BiP.
    Ledford BE; Leno GH
    Mol Cell Biochem; 1994 Sep; 138(1-2):141-8. PubMed ID: 7898457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing.
    Laitusis AL; Brostrom MA; Brostrom CO
    J Biol Chem; 1999 Jan; 274(1):486-93. PubMed ID: 9867869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interconversion of three differentially modified and assembled forms of BiP.
    Freiden PJ; Gaut JR; Hendershot LM
    EMBO J; 1992 Jan; 11(1):63-70. PubMed ID: 1740116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconversion of GRP78/BiP. A novel event in the action of Pasteurella multocida toxin, bombesin, and platelet-derived growth factor.
    Staddon JM; Bouzyk MM; Rozengurt E
    J Biol Chem; 1992 Dec; 267(35):25239-45. PubMed ID: 1460024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses.
    Fabrizio G; Di Paola S; Stilla A; Giannotta M; Ruggiero C; Menzel S; Koch-Nolte F; Sallese M; Di Girolamo M
    Cell Mol Life Sci; 2015 Mar; 72(6):1209-25. PubMed ID: 25292337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible ADP-ribosylation of the 78 kDa glucose-regulated protein.
    Leno GH; Ledford BE
    FEBS Lett; 1990 Dec; 276(1-2):29-33. PubMed ID: 2265706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identity of the immunoglobulin heavy-chain-binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function.
    Hendershot LM; Ting J; Lee AS
    Mol Cell Biol; 1988 Oct; 8(10):4250-6. PubMed ID: 3141786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADP-ribosylation of the 78-kDa glucose-regulated protein during nutritional stress.
    Leno GH; Ledford BE
    Eur J Biochem; 1989 Dec; 186(1-2):205-11. PubMed ID: 2513184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential interaction of molecular chaperones with procollagen I and type IV collagen in corneal endothelial cells.
    Ko MK; Kay EP
    Mol Vis; 2002 Jan; 8():1-9. PubMed ID: 11815750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Down-regulation of epidermal growth factor receptor-signaling pathway by binding of GRP78/BiP to the receptor under glucose-starved stress conditions.
    Cai B; Tomida A; Mikami K; Nagata K; Tsuruo T
    J Cell Physiol; 1998 Nov; 177(2):282-8. PubMed ID: 9766525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of immunoglobulin heavy chain binding protein as glucose-regulated protein 78 on the basis of amino acid sequence, immunological cross-reactivity, and functional activity.
    Kozutsumi Y; Normington K; Press E; Slaughter C; Sambrook J; Gething MJ
    J Cell Sci Suppl; 1989; 11():115-37. PubMed ID: 2559088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase.
    Takemoto H; Yoshimori T; Yamamoto A; Miyata Y; Yahara I; Inoue K; Tashiro Y
    Arch Biochem Biophys; 1992 Jul; 296(1):129-36. PubMed ID: 1318687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular chaperone GRP78/BiP interacts with the large surface protein of hepatitis B virus in vitro and in vivo.
    Cho DY; Yang GH; Ryu CJ; Hong HJ
    J Virol; 2003 Feb; 77(4):2784-8. PubMed ID: 12552023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the 78-kDa glucose-regulated protein/immunoglobulin-binding protein (GRP78/BiP) inhibits tissue factor procoagulant activity.
    Watson LM; Chan AK; Berry LR; Li J; Sood SK; Dickhout JG; Xu L; Werstuck GH; Bajzar L; Klamut HJ; Austin RC
    J Biol Chem; 2003 May; 278(19):17438-47. PubMed ID: 12621026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly.
    Lee YK; Brewer JW; Hellman R; Hendershot LM
    Mol Biol Cell; 1999 Jul; 10(7):2209-19. PubMed ID: 10397760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition.
    Hendershot LM
    J Cell Biol; 1990 Sep; 111(3):829-37. PubMed ID: 2118144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The in vivo association of BiP with newly synthesized proteins is dependent on the rate and stability of folding and not simply on the presence of sequences that can bind to BiP.
    Hellman R; Vanhove M; Lejeune A; Stevens FJ; Hendershot LM
    J Cell Biol; 1999 Jan; 144(1):21-30. PubMed ID: 9885241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains.
    Melnick J; Aviel S; Argon Y
    J Biol Chem; 1992 Oct; 267(30):21303-6. PubMed ID: 1400441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene.
    Watowich SS; Morimoto RI; Lamb RA
    J Virol; 1991 Jul; 65(7):3590-7. PubMed ID: 2041085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis in vivo of GRP78-BiP/substrate interactions and their role in induction of the GRP78-BiP gene.
    Ng DT; Watowich SS; Lamb RA
    Mol Biol Cell; 1992 Feb; 3(2):143-55. PubMed ID: 1550958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.