These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7898470)

  • 1. NAD hydrolysis: chemical and enzymatic mechanisms.
    Oppenheimer NJ
    Mol Cell Biochem; 1994 Sep; 138(1-2):245-51. PubMed ID: 7898470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human CD38 is an authentic NAD(P)+ glycohydrolase.
    Berthelier V; Tixier JM; Muller-Steffner H; Schuber F; Deterre P
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1383-90. PubMed ID: 9494110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase.
    Moss J; Manganiello VC; Vaughan M
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4424-7. PubMed ID: 188038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the mechanistic understanding of human CD38-controlled multiple catalysis.
    Liu Q; Kriksunov IA; Graeff R; Munshi C; Lee HC; Hao Q
    J Biol Chem; 2006 Oct; 281(43):32861-9. PubMed ID: 16951430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.
    Cakir-Kiefer C; Muller-Steffner H; Schuber F
    Biochem J; 2000 Jul; 349(Pt 1):203-10. PubMed ID: 10861229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of cytosolic NAD+ glycohydrolase in cyclic ADP-ribose metabolism.
    Matsumura N; Tanuma S
    Biochem Biophys Res Commun; 1998 Dec; 253(2):246-52. PubMed ID: 9878523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the transglycosidation activity of NAD+ glycohydrolases with 4-(2'-alkyl-sulfanyl-vinyl)-pyridine derivatives generating chromophoric NAD+ analogs.
    Pacaud K; Tritsch D; Burger A; Biellmann JF
    Bioorg Chem; 2003 Aug; 31(4):288-305. PubMed ID: 12877879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridine nucleosidase in bull semen. II. Biochemical properties.
    Giles KH; Macmillan KL
    Aust J Biol Sci; 1975 Jun; 28(3):273-7. PubMed ID: 241313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diphtheria toxin catalyzed hydrolysis of NAD(+): molecular dynamics study of enzyme-bound substrate, transition state, and inhibitor.
    Kahn K; Bruice TC
    J Am Chem Soc; 2001 Dec; 123(48):11960-9. PubMed ID: 11724604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors.
    Migaud ME; Pederick RL; Bailey VC; Potter BV
    Biochemistry; 1999 Jul; 38(28):9105-14. PubMed ID: 10413485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual enzymatic hydrolysis of NAD by solubilized form of NAD(+) glycohydrolase.
    Tono-oka S; Hatakeyama M
    Chem Pharm Bull (Tokyo); 2002 Jun; 50(6):831-3. PubMed ID: 12045341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nicotinamide 2-fluoroadenine dinucleotide unmasks the NAD+ glycohydrolase activity of Aplysia californica adenosine 5'-diphosphate ribosyl cyclase.
    Zhang B; Muller-Steffner H; Schuber F; Potter BV
    Biochemistry; 2007 Apr; 46(13):4100-9. PubMed ID: 17341094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism-based inhibitors of CD38: a mammalian cyclic ADP-ribose synthetase.
    Sauve AA; Schramm VL
    Biochemistry; 2002 Jul; 41(26):8455-63. PubMed ID: 12081495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an unusual AT(D)Pase-like activity in multifunctional NAD glycohydrolase from the venom of Agkistrodon acutus.
    Zhang L; Xu X; Luo Z; Shen D; Wu H
    Biochimie; 2009 Feb; 91(2):240-51. PubMed ID: 18952139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD+ analogs substituted in the purine base as substrates for poly(ADP-ribosyl) transferase.
    Oei SL; Griesenbeck J; Buchlow G; Jorcke D; Mayer-Kuckuk P; Wons T; Ziegler M
    FEBS Lett; 1996 Nov; 397(1):17-21. PubMed ID: 8941705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of bovine spleen NAD+ glycohydrolase in the metabolism of cyclic ADP-ribose-mechanism of the cyclization reaction.
    Muller-Steffner H; Augustin A; Schuber F
    Adv Exp Med Biol; 1997; 419():399-409. PubMed ID: 9193682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic implications of cyclic ADP-ribose hydrolysis and methanolysis catalyzed by calf spleen NAD+glycohydrolase.
    Muller-Steffner H; Muzard M; Oppenheimer N; Schuber F
    Biochem Biophys Res Commun; 1994 Nov; 204(3):1279-85. PubMed ID: 7980606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases.
    Kim H; Jacobson EL; Jacobson MK
    Science; 1993 Sep; 261(5126):1330-3. PubMed ID: 8395705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.