These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7898647)

  • 21. Heterogeneity of alpha 2-adrenoceptors in rat cortex but not human platelets can be defined by 8-OH-DPAT, RU 24969 and methysergide.
    Brown CM; MacKinnon AC; McGrath JC; Spedding M; Kilpatrick AT
    Br J Pharmacol; 1990 Mar; 99(3):481-6. PubMed ID: 1970497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein kinase C immunoreactivity in kitten visual cortex is developmentally regulated and input-dependent.
    Jia WG; Beaulieu C; Huang FL; Cynader MS
    Brain Res Dev Brain Res; 1990 Dec; 57(2):209-21. PubMed ID: 2073720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autoradiographic analysis of adrenergic receptors in the mammalian brain.
    Goffinet AM; De Volder A
    Acta Neurol Belg; 1985; 85(2):82-109. PubMed ID: 2988261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of tetrodotoxin treatment in LGN on neuromodulatory receptor expression in developing visual cortex.
    Gu Q; Liu Y; Dyck RH; Booth V; Cynader MS
    Brain Res Dev Brain Res; 1998 Mar; 106(1-2):93-9. PubMed ID: 9554966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathfinding and target selection by developing geniculocortical axons.
    Ghosh A; Shatz CJ
    J Neurosci; 1992 Jan; 12(1):39-55. PubMed ID: 1729444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [3H]-RS-15385-197, a selective and high affinity radioligand for alpha 2-adrenoceptors: implications for receptor classification.
    MacKinnon AC; Kilpatrick AT; Kenny BA; Spedding M; Brown CM
    Br J Pharmacol; 1992 Aug; 106(4):1011-8. PubMed ID: 1327384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: transient regional, laminar, and columnar distributions during postnatal development.
    Dyck RH; Cynader MS
    J Neurosci; 1993 Oct; 13(10):4316-38. PubMed ID: 8410190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monocularly induced 2-deoxyglucose patterns in the visual cortex and lateral geniculate nucleus of the cat: I. Anaesthetized and paralysed animals.
    Löwel S; Singer W
    Eur J Neurosci; 1993 Jul; 5(7):846-56. PubMed ID: 8281297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of the visual cortex in a wallaby--phylogenetic implications.
    Harman AM; Eastough NJ; Beazley LD
    Brain Behav Evol; 1995; 45(3):138-52. PubMed ID: 7796093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a nicotinic component to the actions of acetylcholine in cat visual cortex.
    Parkinson D; Kratz KE; Daw NW
    Exp Brain Res; 1988; 73(3):553-68. PubMed ID: 3224664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [3H]Dihydroergocryptine binding to alpha-adrenergic receptors of human platelets. A reassessment using the selective radioligands [3H]prazosin, [3H]yohimbine, and [3H]rauwolscine.
    Motulsky HJ; Insel PA
    Biochem Pharmacol; 1982 Aug; 31(16):2591-7. PubMed ID: 6291538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex.
    Goldman-Rakic PS; Lidow MS; Gallager DW
    J Neurosci; 1990 Jul; 10(7):2125-38. PubMed ID: 2165520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of the laminar distribution of thalamocortical axons and corticothalamic cell bodies in the visual cortex of the wallaby.
    Sheng XM; Marotte LR; Mark RF
    J Comp Neurol; 1991 May; 307(1):17-38. PubMed ID: 1713226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the interaction of agmatine and crude methanolic extracts of bovine lung and brain with alpha 2-adrenoceptor binding sites.
    Pinthong D; Hussain JF; Kendall DA; Wilson VG
    Br J Pharmacol; 1995 Jun; 115(4):689-95. PubMed ID: 7582492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postnatal development of central nervous alpha 2-adrenergic binding sites: an in vitro autoradiography study in the tree shrew.
    Flügge G; Brandt S; Fuchs E
    Brain Res Dev Brain Res; 1993 Aug; 74(2):163-75. PubMed ID: 8403380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Differential regulation of alpha 1- and alpha 2-adrenergic receptors by guanyl nucleotides and Na.
    Snavely MD; Insel PA
    Mol Pharmacol; 1982 Nov; 22(3):532-46. PubMed ID: 6296651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique profiles of the alpha 1-, alpha 2-, and beta-adrenergic receptors in the developing cortical plate and transient embryonic zones of the rhesus monkey.
    Lidow MS; Rakic P
    J Neurosci; 1994 Jul; 14(7):4064-78. PubMed ID: 8027763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alpha-2 adrenergic receptor subtypes indicated by [3H]yohimbine binding in human brain.
    Petrash AC; Bylund DB
    Life Sci; 1986 Jun; 38(23):2129-37. PubMed ID: 3012234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alpha 2-adrenoceptor subtypes and imidazoline-like binding sites in the rat brain.
    Brown CM; MacKinnon AC; McGrath JC; Spedding M; Kilpatrick AT
    Br J Pharmacol; 1990 Apr; 99(4):803-9. PubMed ID: 1972896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adrenoceptors in avian and fish pigment cells.
    Filadelfi AM; Rodrigues PR; Castrucci AM; Visconti MA
    J Comp Physiol B; 2002 Oct; 172(7):599-606. PubMed ID: 12355228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.