These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 7898683)

  • 1. Death of neurons in the neonatal rodent and primate globus pallidus occurs by a mechanism of apoptosis.
    Waters CM; Moser W; Walkinshaw G; Mitchell IJ
    Neuroscience; 1994 Dec; 63(3):881-94. PubMed ID: 7898683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell death in denervated skeletal muscle is distinct from classical apoptosis.
    Borisov AB; Carlson BM
    Anat Rec; 2000 Mar; 258(3):305-18. PubMed ID: 10705351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transneuronal degeneration in substantia nigra pars reticulata following striatal excitotoxic injury in adult rat: time-course, distribution, and morphology of cell death.
    Stefanis L; Burke RE
    Neuroscience; 1996 Oct; 74(4):997-1008. PubMed ID: 8895868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms.
    Fujikawa DG; Shinmei SS; Cai B
    Neuroscience; 2000; 98(1):41-53. PubMed ID: 10858610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression.
    Marshall JF; Henry BL; Billings LM; Hoover BR
    Neuroscience; 2001; 105(2):365-78. PubMed ID: 11672604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific association of c-Jun-like immunoreactivity but not c-Jun p39 with normal and induced programmed cell death in the chick embryo.
    Ayala V; Casas C; Ribera J; Calderó J; Oppenhiem RW; Esquerda JE
    J Neurobiol; 1999 Feb; 38(2):171-90. PubMed ID: 10022565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genesis and fate of the perireticular thalamic nucleus during early development.
    Earle KL; Mitrofanis J
    J Comp Neurol; 1996 Apr; 367(2):246-63. PubMed ID: 8708008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal striatal neurons grafted into the ibotenate lesioned adult striatum: efferent projections and synaptic contacts in the host globus pallidus.
    Wictorin K; Clarke DJ; Bolam JP; Björklund A
    Neuroscience; 1990; 37(2):301-15. PubMed ID: 2133346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain.
    Ishimaru MJ; Ikonomidou C; Tenkova TI; Der TC; Dikranian K; Sesma MA; Olney JW
    J Comp Neurol; 1999 Jun; 408(4):461-76. PubMed ID: 10340498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntington's disease.
    Nakao N; Ogura M; Nakai K; Itakura T
    Neuroscience; 1999 Jan; 88(2):469-77. PubMed ID: 10197767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent changes in iron levels and associated neuronal loss within the substantia nigra following lesions within the neostriatum/globus pallidus complex.
    Sastry S; Arendash GW
    Neuroscience; 1995 Aug; 67(3):649-66. PubMed ID: 7545796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphologic criteria and detection of apoptosis.
    Saraste A
    Herz; 1999 May; 24(3):189-95. PubMed ID: 10412642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-embedding immunogold labeling of TUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterations in individual cells of neuronal tissue.
    Barth M; Oulmi Y; Ehrenreich H; Schilling L
    Acta Neuropathol; 2002 Dec; 104(6):621-36. PubMed ID: 12410384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural and cytochemical identification of apoptotic cell death accompanying development of the fetal rat olfactory nerve layer.
    Pellier V; Saucier D; Oestreicher AB; Astic L
    Anat Embryol (Berl); 1996 Jul; 194(1):99-109. PubMed ID: 8800427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear patterns of apoptotic and developing neurons of superior cervical ganglion of newborn rat.
    Diana A; Setzu M; Sirigu S; Diaz G
    Int J Dev Neurosci; 1993 Dec; 11(6):773-80. PubMed ID: 7510924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between normal developing striatum and developing striatal grafts using drug-induced Fos expression and neuron-specific enolase immunohistochemistry.
    Labandeira-Garcia JL; Tobio JP; Guerra MJ
    Neuroscience; 1994 May; 60(2):399-415. PubMed ID: 7915411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoptotic death of olfactory sensory neurons in the adult rat.
    Deckner ML; Risling M; Frisén J
    Exp Neurol; 1997 Jan; 143(1):132-40. PubMed ID: 9000452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal.
    Edwards SN; Tolkovsky AM
    J Cell Biol; 1994 Feb; 124(4):537-46. PubMed ID: 8106551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus.
    Hoover BR; Marshall JF
    Neuroscience; 2002; 111(1):111-25. PubMed ID: 11955716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum.
    Portera-Cailliau C; Price DL; Martin LJ
    J Comp Neurol; 1997 Feb; 378(1):70-87. PubMed ID: 9120055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.