BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7899243)

  • 1. Comparison of the transport characteristics of D- and L-methionine in a human intestinal epithelial model (Caco-2) and in a perfused rat intestinal model.
    Zheng L; Chen J; Zhu Y; Yang H; Elmquist W; Hu M
    Pharm Res; 1994 Dec; 11(12):1771-6. PubMed ID: 7899243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on L- and D-methionine uptake across the apical membrane of Caco-2 cells.
    Martín-Venegas R; Rodríguez-Lagunas MJ; Mercier Y; Geraert PA; Ferrer R
    Am J Physiol Cell Physiol; 2009 Mar; 296(3):C632-8. PubMed ID: 19144861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model.
    Liu Y; Hu M
    Drug Metab Dispos; 2002 Apr; 30(4):370-7. PubMed ID: 11901089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2).
    Hu M; Chen J; Zhu Y; Dantzig AH; Stratford RE; Kuhfeld MT
    Pharm Res; 1994 Oct; 11(10):1405-13. PubMed ID: 7855043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of pregabalin in rat intestine and Caco-2 monolayers.
    Jezyk N; Li C; Stewart BH; Wu X; Bockbrader HN; Fleisher D
    Pharm Res; 1999 Apr; 16(4):519-26. PubMed ID: 10227706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal transport of 3,6'-disinapoylsucrose, a major active component of Polygala tenuifolia, using Caco-2 cell monolayer and in situ rat intestinal perfusion models.
    Chen Y; Liu X; Pan R; Zhu X; Steinmetz A; Liao Y; Wang N; Peng B; Chang Q
    Planta Med; 2013 Oct; 79(15):1434-9. PubMed ID: 24043590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A correlation between the permeability characteristics of a series of peptides using an in vitro cell culture model (Caco-2) and those using an in situ perfused rat ileum model of the intestinal mucosa.
    Kim DC; Burton PS; Borchardt RT
    Pharm Res; 1993 Dec; 10(12):1710-4. PubMed ID: 8302755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers.
    Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU
    Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in tolbutamide permeability in rat jejunum and Caco-2 cells by Sho-saiko-to (Xiao Chai Hu Tang), a Chinese traditional medicine.
    Nishimura N; Uemura T; Iwamoto K; Naora K
    J Pharm Pharmacol; 2010 May; 62(5):651-7. PubMed ID: 20609069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal absorption mechanisms of araloside A in situ single-pass intestinal perfusion and in vitro Caco-2 cell model.
    Yang H; Zhai B; Fan Y; Wang J; Sun J; Shi Y; Guo D
    Biomed Pharmacother; 2018 Oct; 106():1563-1569. PubMed ID: 30119231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic evidence for separate systems in transport of D- and L-methionine by rat small intestine.
    Brachet P; Alvarado F; Puigserver A
    Am J Physiol; 1987 Mar; 252(3 Pt 1):G320-4. PubMed ID: 3826371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved intestinal transport of PD 158473, an N-methyl-D-aspartate (NMDA) antagonist, by involvement of multiple transporters.
    Oh DM; Han HK; Williamson RM; Bigge CF; Amidon GL; Stewart BH; Surendran N
    J Pharm Sci; 2002 Dec; 91(12):2579-87. PubMed ID: 12434401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H(+)-coupled alpha-methylaminoisobutyric acid transport in human intestinal Caco-2 cells.
    Thwaites DT; McEwan GT; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1995 Mar; 1234(1):111-8. PubMed ID: 7880851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in accumulation and the transport mechanism of l- and d-methionine in high- and low-grade human glioma cells.
    Kobayashi M; Mizutani A; Nishi K; Nakajima S; Shikano N; Nishii R; Fukuchi K; Kawai K
    Nucl Med Biol; 2017 Jan; 44():78-82. PubMed ID: 27835793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport characteristics of ginkgolide B by Caco-2 cells and examination of ginkgolide B oral absorption potential using rat in situ intestinal loop method.
    Lv H; Wang G; Wu X; Xie L; Huang C; Li H; Liang Y; Hao H; Sun J
    Int J Pharm; 2008 Mar; 351(1-2):31-5. PubMed ID: 17983711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption.
    Thwaites DT; Hirst BH; Simmons NL
    Br J Pharmacol; 1994 Nov; 113(3):1050-6. PubMed ID: 7858848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of L-alpha-methyldopa transport through a monolayer of polarized human intestinal epithelial cells (Caco-2).
    Hu M; Borchardt RT
    Pharm Res; 1990 Dec; 7(12):1313-9. PubMed ID: 2095572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and kinetics of uptake and efflux of L-methionine in an intestinal epithelial model (Caco-2).
    Chen J; Zhu Y; Hu M
    J Nutr; 1994 Oct; 124(10):1907-16. PubMed ID: 7931699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.