These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. [Interaction of simple tetrahydroisoquinolines with opiate and high-affinity dopamine (D3) receptors in the rat corpus striatum]. Patsenko AA; Grinevich VP; Ostrovskiĭ IuM Farmakol Toksikol; 1987; 50(4):33-5. PubMed ID: 2822473 [TBL] [Abstract][Full Text] [Related]
6. Neurotransmitter, opiate and benzodiazepine receptor binding of tetrahydroisoquinolines and beta-carbolines in brain membranes. Nimit Y; Schulze I; Cashaw JL; Ruchirawat S; Davis VE Prog Clin Biol Res; 1982; 90():311-20. PubMed ID: 6287493 [No Abstract] [Full Text] [Related]
7. Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson's disease. Elsworth JD; Roth RH Exp Neurol; 1997 Mar; 144(1):4-9. PubMed ID: 9126143 [TBL] [Abstract][Full Text] [Related]
8. Endogenous risk factors in Parkinson's disease: dopamine and tetrahydroisoquinolines. Antkiewicz-Michaluk L Pol J Pharmacol; 2002; 54(6):567-72. PubMed ID: 12866710 [TBL] [Abstract][Full Text] [Related]
9. Pesticides and metals induced Parkinson's disease: involvement of free radicals and oxidative stress. Singh C; Ahmad I; Kumar A Cell Mol Biol (Noisy-le-grand); 2007 May; 53(5):19-28. PubMed ID: 17543230 [TBL] [Abstract][Full Text] [Related]
10. The current state of free radicals in Parkinson's disease. Nigral iron as a trigger of oxidative stress. Friedman A; Galazka-Friedman J Adv Neurol; 2001; 86():137-42. PubMed ID: 11553971 [No Abstract] [Full Text] [Related]
12. Challenging conventional wisdom: the etiologic role of dopamine oxidative stress in Parkinson's disease. Ahlskog JE Mov Disord; 2005 Mar; 20(3):271-82. PubMed ID: 15580550 [TBL] [Abstract][Full Text] [Related]
13. A convergent approach to the pharmacology of tetrahydroisoquinolines. Britton DR Prog Clin Biol Res; 1982; 90():321-6. PubMed ID: 6287494 [No Abstract] [Full Text] [Related]
14. [Neuroprotective and neurorestorative therapy in Parkinson's disease]. Jiménez-Jiménez FJ; Molina JA Rev Neurol; 1997 Aug; 25 Suppl 2():S185-93. PubMed ID: 9280687 [TBL] [Abstract][Full Text] [Related]
15. [Oxidative stress and Parkinson's disease: mechanisms and perspectives of treatment]. Katunina EA; Titova NV; Malykhina EA; Gasanov MG; Makarova AA; Voronina TA; Nerobkova LN; Valdman EA; Avakyan GN Zh Nevrol Psikhiatr Im S S Korsakova; 2015; 115(7):141-145. PubMed ID: 26356527 [No Abstract] [Full Text] [Related]
16. N-methylated tetrahydroisoquinolines as dopaminergic neurotoxins. Naoi M; Dostert P; Yoshida M; Nagatsu T Adv Neurol; 1993; 60():212-7. PubMed ID: 8420137 [TBL] [Abstract][Full Text] [Related]
17. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Lotharius J; Brundin P Nat Rev Neurosci; 2002 Dec; 3(12):932-42. PubMed ID: 12461550 [No Abstract] [Full Text] [Related]
18. Brain neurotransmitters and neuropeptides in Parkinson's disease. Rinne UK; Rinne JO; Rinne JK; Laakso K; Lönnberg P Acta Physiol Pharmacol Latinoam; 1984; 34(3):287-99. PubMed ID: 6099688 [TBL] [Abstract][Full Text] [Related]
19. Adenosine receptors and Parkinson's disease. Relevance of antagonistic adenosine and dopamine receptor interactions in the striatum. Fuxe K; Strömberg I; Popoli P; Rimondini-Giorgini R; Torvinen M; Ogren SO; Franco R; Agnati LF; Ferré S Adv Neurol; 2001; 86():345-53. PubMed ID: 11553995 [No Abstract] [Full Text] [Related]