BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7899732)

  • 1. HCO3- dehydration by the blood of an elasmobranch in the absence of a Haldane effect.
    Wood CM; Perry SF; Walsh PJ; Thomas S
    Respir Physiol; 1994; 98(3):319-37. PubMed ID: 7899732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adrenergic inhibition of carbon dioxide excretion by trout red blood cells in vitro is mediated by activation of Na+/H+ exchange.
    Perry SF; Wood CM; Thomas S; Walsh PJ
    J Exp Biol; 1991 May; 157():367-80. PubMed ID: 1648121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+-H+ exchange and pH regulation in red blood cells: role of uncatalyzed H2CO3 dehydration.
    Motais R; Fievet B; Garcia-Romeu F; Thomas S
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C728-35. PubMed ID: 2539723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity.
    Desforges PR; Gilmour KM; Perry SF
    J Comp Physiol B; 2001 Aug; 171(6):465-73. PubMed ID: 11585258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HCO3- dehydration by the blood of rainbow trout following exhaustive exercise.
    Wood CM
    Respir Physiol; 1994; 98(3):305-18. PubMed ID: 7899731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buffering limits plasma HCO3- dehydration when red blood cell anion exchange is inhibited.
    Gilmour KM; Desforges PR; Perry SF
    Respir Physiol Neurobiol; 2004 May; 140(2):173-87. PubMed ID: 15134665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of Na+ and HCO3- out of red blood cells is simultaneous with a chloride shift in canine and human whole blood exposed to CO2-rich gas.
    Hirakawa S; Shimabukuro S; Asano K; Minagawa T; Iguchi H; Hiraoka J
    Jpn J Physiol; 1993; 43(1):35-49. PubMed ID: 8336423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonic anhydrase inhibitor in trout plasma.
    Haswell MS; Randall DJ
    Respir Physiol; 1976 Oct; 28(1):17-27. PubMed ID: 10613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of bicarbonate/chloride exchange in dogfish erythrocytes.
    Obaid AL; Critz AM; Crandall ED
    Am J Physiol; 1979 Sep; 237(3):R132-8. PubMed ID: 112874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of postcapillary pH changes in blood in vivo after gas exchange.
    Bidani A; Crandall ED; Forster RE
    J Appl Physiol Respir Environ Exerc Physiol; 1978 May; 44(5):770-81. PubMed ID: 25860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish.
    Thomas S; Perry SF
    J Exp Zool; 1992 Aug; 263(2):160-75. PubMed ID: 1323642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branchial membrane-associated carbonic anhydrase activity maintains CO2 excretion in severely anemic dogfish.
    Gilmour KM; Perry SF
    Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1138-48. PubMed ID: 14988082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood acid-base balance as a function of water oxygenation: a study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula.
    Truchot JP; Toulmond A; Dejours P
    Respir Physiol; 1980 Jul; 41(1):13-28. PubMed ID: 6771856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of gill and red cell carbonic anhydrase in elasmobranch HCO3- and CO2 excretion.
    Swenson ER; Maren TH
    Am J Physiol; 1987 Sep; 253(3 Pt 2):R450-8. PubMed ID: 3115121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new in vitro assay for carbon dioxide excretion by trout red blood cells: effects of catecholamines.
    Wood CM; Perry SF
    J Exp Biol; 1991 May; 157():349-66. PubMed ID: 1648120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule.
    Krapf R; Alpern RJ; Rector FC; Berry CA
    J Gen Physiol; 1987 Dec; 90(6):833-53. PubMed ID: 2831294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas transfer in dogfish: a unique model of CO2 excretion.
    Gilmour KM; Perry SF
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Apr; 155(4):476-85. PubMed ID: 19896550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na +/H+ and Cl-/HCO3- exchange in apical plasma membranes.
    Friedman PA; Andreoli TE
    J Gen Physiol; 1982 Nov; 80(5):683-711. PubMed ID: 6816900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: Na+ dependence.
    Aickin CC
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):301-16. PubMed ID: 7799229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.
    Jensen FB
    Acta Physiol Scand; 2004 Nov; 182(3):215-27. PubMed ID: 15491402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.