BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 7899982)

  • 21. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic.
    He F; Ren W; Tian X; Liu W; Wu S; Chen X
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():117-123. PubMed ID: 27127035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of adding bone marrow to ceramic graft materials with different interconnectivities in lumbar arthrodesis : quantification of bone formation.
    Odri GA; Revert R; Deschamps C; Romih M; Maugars Y; Heymann D; Delecrin J
    J Orthop Sci; 2013 Mar; 18(2):321-30. PubMed ID: 23203844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of hydroxyapatite ceramic vertebral spacers with different porosities and their binding capability to the vertebral body: an experimental study in sheep.
    Ito M; Kotani Y; Hojo Y; Abumi K; Kadosawa T; Minami A
    J Neurosurg Spine; 2007 May; 6(5):431-7. PubMed ID: 17542509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastructural and electron diffraction of the bone-ceramic interfacial zone in coral and biphasic CaP implants.
    Richard M; Aguado E; Cottrel M; Daculsi G
    Calcif Tissue Int; 1998 May; 62(5):437-42. PubMed ID: 9541521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the osteoconductive properties of three particulate bone fillers in a rabbit model: allograft, calcium carbonate (Biocoral®) and S53P4 bioactive glass.
    Gunn JM; Rekola J; Hirvonen J; Aho AJ
    Acta Odontol Scand; 2013 Sep; 71(5):1238-42. PubMed ID: 23294163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of sintered bone in spinal surgery.
    Minamide A; Tamaki T; Yoshida M; Hashizume H; Nakagawa Y
    Eur Spine J; 2001 Oct; 10 Suppl 2(Suppl 2):S185-8. PubMed ID: 11716017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications.
    Damien E; Revell PA
    J Appl Biomater Biomech; 2004; 2(2):65-73. PubMed ID: 20803439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spinal fusions: bone and bone substitutes.
    Marchesi DG
    Eur Spine J; 2000 Oct; 9(5):372-8. PubMed ID: 11057529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes.
    Damien CJ; Ricci JL; Christel P; Alexander H; Patat JL
    Calcif Tissue Int; 1994 Aug; 55(2):151-8. PubMed ID: 7953981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo bioresorbability and bone formation ability of sintered highly pure calcium carbonate granules.
    Umemoto S; Furusawa T; Unuma H; Tajika M; Sekino T
    Dent Mater J; 2021 Sep; 40(5):1202-1207. PubMed ID: 34121021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coralline hydroxyapatite bone graft substitutes.
    Elsinger EC; Leal L
    J Foot Ankle Surg; 1996; 35(5):396-9. PubMed ID: 8915861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts.
    Doherty MJ; Schlag G; Schwarz N; Mollan RA; Nolan PC; Wilson DJ
    Biomaterials; 1994 Jun; 15(8):601-8. PubMed ID: 7948579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Spinal arthrodesis. basic science].
    Guerado E; Andrist T; Andrades JA; Santos L; Cerván A; Guerado G; Becerra J
    Rev Esp Cir Ortop Traumatol; 2012; 56(3):227-44. PubMed ID: 23594811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Raman investigation of calcium carbonate bone substitutes and related biomaterials.
    Penel G; Pottier EC; Leroy G
    Bull Group Int Rech Sci Stomatol Odontol; 2003; 45(2-3):56-9. PubMed ID: 15148877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced bone regenerative properties of calcium phosphate ceramic granules in rabbit posterolateral spinal fusion through a reduction of grain size.
    Li X; Zhou Q; Wu Y; Feng C; Yang X; Wang L; Xiao Y; Zhang K; Zhu X; Liu L; Song Y; Zhang X
    Bioact Mater; 2022 May; 11():90-106. PubMed ID: 34938915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of tissue-engineered constructs from
    Decambron A; Manassero M; Bensidhoum M; Lecuelle B; Logeart-Avramoglou D; Petite H; Viateau V
    Bone Joint Res; 2017 Apr; 6(4):208-215. PubMed ID: 28408376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The use of coral in bone surgery. Results following 4 years of utilization].
    Loty B; Roux FX; George B; Courpied JP; Postel M
    Int Orthop; 1990; 14(3):255-9. PubMed ID: 2279832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?
    Gibbs DM; Vaezi M; Yang S; Oreffo RO
    Regen Med; 2014; 9(4):535-49. PubMed ID: 25159068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes.
    Garrido CA; Lobo SE; Turíbio FM; Legeros RZ
    Int J Biomater; 2011; 2011():129727. PubMed ID: 21760793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium Uptake by a Coral.
    Goreau TF; Bowen VT
    Science; 1955 Dec; 122(3181):1188-9. PubMed ID: 17807270
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.