These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 7900998)
21. The roles of signal peptide and mature protein in RNase (barnase) export from Bacillus subtilis. Chen M; Nagarajan V Mol Gen Genet; 1993 Jun; 239(3):409-15. PubMed ID: 8316212 [TBL] [Abstract][Full Text] [Related]
22. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone. White ZW; Fisher KE; Eisenstein E J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615 [TBL] [Abstract][Full Text] [Related]
23. Identification of a chaperonin binding site in a chloroplast precursor protein. Dessauer CW; Bartlett SG J Biol Chem; 1994 Aug; 269(31):19766-76. PubMed ID: 7914191 [TBL] [Abstract][Full Text] [Related]
24. Dynamics of the GroEL-protein complex: effects of nucleotides and folding mutants. Sparrer H; Lilie H; Buchner J J Mol Biol; 1996 Apr; 258(1):74-87. PubMed ID: 8613994 [TBL] [Abstract][Full Text] [Related]
25. Characterization of a functionally important mobile domain of GroES. Landry SJ; Zeilstra-Ryalls J; Fayet O; Georgopoulos C; Gierasch LM Nature; 1993 Jul; 364(6434):255-8. PubMed ID: 8100614 [TBL] [Abstract][Full Text] [Related]
26. Glycosylation inhibits the interaction of invertase with the chaperone GroEL. Kern G; Schmidt M; Buchner J; Jaenicke R FEBS Lett; 1992 Jul; 305(3):203-5. PubMed ID: 1363729 [TBL] [Abstract][Full Text] [Related]
27. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Landry SJ; Jordan R; McMacken R; Gierasch LM Nature; 1992 Jan; 355(6359):455-7. PubMed ID: 1346469 [TBL] [Abstract][Full Text] [Related]
28. Prolyl isomerases catalyze antibody folding in vitro. Lilie H; Lang K; Rudolph R; Buchner J Protein Sci; 1993 Sep; 2(9):1490-6. PubMed ID: 8104614 [TBL] [Abstract][Full Text] [Related]
29. Toward solving the folding pathway of barnase: the complete backbone 13C, 15N, and 1H NMR assignments of its pH-denatured state. Arcus VL; Vuilleumier S; Freund SM; Bycroft M; Fersht AR Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9412-6. PubMed ID: 7937780 [TBL] [Abstract][Full Text] [Related]
30. Real-time NMR studies on folding of mutants of barnase and chymotrypsin inhibitor 2. Killick TR; Freund SM; Fersht AR FEBS Lett; 1998 Feb; 423(1):110-2. PubMed ID: 9506851 [TBL] [Abstract][Full Text] [Related]
31. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. Jones DN; Bycroft M; Lubienski MJ; Fersht AR FEBS Lett; 1993 Sep; 331(1-2):165-72. PubMed ID: 8405399 [TBL] [Abstract][Full Text] [Related]
32. Identification and characterization of the Escherichia coli stress protein UP12, a putative in vivo substrate of GroEL. Bochkareva ES; Girshovich AS; Bibi E Eur J Biochem; 2002 Jun; 269(12):3032-40. PubMed ID: 12071968 [TBL] [Abstract][Full Text] [Related]
33. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Thomas JG; Baneyx F Mol Microbiol; 2000 Jun; 36(6):1360-70. PubMed ID: 10931286 [TBL] [Abstract][Full Text] [Related]
34. Foldability of barnase mutants obtained by permutation of modules or secondary structure units. Tsuji T; Yoshida K; Satoh A; Kohno T; Kobayashi K; Yanagawa H J Mol Biol; 1999 Mar; 286(5):1581-96. PubMed ID: 10064693 [TBL] [Abstract][Full Text] [Related]
35. Local breathing and global unfolding in hydrogen exchange of barnase and its relationship to protein folding pathways. Clarke J; Hounslow AM; Bycroft M; Fersht AR Proc Natl Acad Sci U S A; 1993 Nov; 90(21):9837-41. PubMed ID: 8234322 [TBL] [Abstract][Full Text] [Related]
36. Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP. Mizobata T; Akiyama Y; Ito K; Yumoto N; Kawata Y J Biol Chem; 1992 Sep; 267(25):17773-9. PubMed ID: 1355477 [TBL] [Abstract][Full Text] [Related]
37. Foldability, enzymatic activity, and interacting ability of barnase mutants obtained by permutation of secondary structure units. Tsuji T; Yanagawa H Biochemistry; 2004 Jun; 43(22):6968-75. PubMed ID: 15170334 [TBL] [Abstract][Full Text] [Related]
38. GroEL-mediated folding of structurally homologous dihydrofolate reductases. Clark AC; Frieden C J Mol Biol; 1997 May; 268(2):512-25. PubMed ID: 9159487 [TBL] [Abstract][Full Text] [Related]
39. [The interaction of the GroEL chaperone with early kinetic intermediates of renaturing proteins inhibits the formation of their native structure]. Marchenkov VV; SokolovskiÄ IV; Kotova NV; Galzitskaya OV; Bochkareva ES; Girshovich AS; Semisotnov GV Biofizika; 2004; 49(6):987-94. PubMed ID: 15612537 [TBL] [Abstract][Full Text] [Related]
40. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Martin J; Geromanos S; Tempst P; Hartl FU Nature; 1993 Nov; 366(6452):279-82. PubMed ID: 7901771 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]