These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 7901008)

  • 1. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway.
    Dickinson JR; Sobanski MA; Hewlins MJ
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():385-91. PubMed ID: 7704269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae.
    Aguilera A
    Mol Gen Genet; 1986 Aug; 204(2):310-6. PubMed ID: 3020369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis.
    Verho R; Richard P; Jonson PH; Sundqvist L; Londesborough J; Penttilä M
    Biochemistry; 2002 Nov; 41(46):13833-8. PubMed ID: 12427047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations suppressing the effects of a deletion of the phosphoglucose isomerase gene PGI1 in Saccharomyces cerevisiae.
    Aguilera A
    Curr Genet; 1987; 11(6-7):429-34. PubMed ID: 3329972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.
    González A; Rodríguez L; Olivera H; Soberón M
    J Gen Microbiol; 1985 Oct; 131(10):2565-71. PubMed ID: 2866224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and genetic studies on the function of, and relationship between, the PGI1- and CDC30-encoded phosphoglucose isomerases in Saccharomyces cerevisiae.
    Dickinson JR
    J Gen Microbiol; 1991 Apr; 137(4):765-70. PubMed ID: 1856676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae.
    Coschigano PW; Miller SM; Magasanik B
    Mol Cell Biol; 1991 Sep; 11(9):4455-65. PubMed ID: 1652057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae.
    Miller SM; Magasanik B
    Mol Cell Biol; 1991 Dec; 11(12):6229-47. PubMed ID: 1682801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis.
    Goffrini P; Wésolowski-Louvel M; Ferrero I
    Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae.
    Miller SM; Magasanik B
    J Bacteriol; 1990 Sep; 172(9):4927-35. PubMed ID: 1975578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ¹³C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae.
    Tang Y; Sieg A; Trotter PJ
    Microbiol Res; 2011 Oct; 166(7):521-30. PubMed ID: 21242068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase.
    Moye WS; Amuro N; Rao JK; Zalkin H
    J Biol Chem; 1985 Jul; 260(14):8502-8. PubMed ID: 2989290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical analysis of the glutamate dehydrogenase kinetics under physiological conditions.
    Popova SV; Reich JG
    Biomed Biochim Acta; 1983; 42(1):27-36. PubMed ID: 6136273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains.
    Heux S; Cadiere A; Dequin S
    FEMS Yeast Res; 2008 Mar; 8(2):217-24. PubMed ID: 18036177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic studies with a phosphoglucose isomerase mutant of Saccharomyces cerevisiae.
    Maitra PK; Lobo Z
    Mol Gen Genet; 1977 Nov; 156(1):55-60. PubMed ID: 340892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.