These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7901117)

  • 1. Comparative studies of phenothiazine derivatives for their effects on swelling of normal and sickle erythrocytes.
    Thompson AA; Cornelius AS; Asakura T; Horiuchi K
    Gen Pharmacol; 1993 Jul; 24(4):999-1006. PubMed ID: 7901117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisickling effects of membrane-interacting compounds.
    Ohnishi ST
    Blood Cells; 1982; 8(2):337-43. PubMed ID: 6130805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some relationships concerning the chemical structure, hemolytic activity, and therapeutic potency of phenothiazines.
    Mao TS; Noval JJ
    Biochem Pharmacol; 1966 Apr; 15(4):501-4. PubMed ID: 6005981
    [No Abstract]   [Full Text] [Related]  

  • 4. The mechanism of chlorpromazine-induced red blood cell swelling.
    Cornelius AS; Reilly MP; Suzuki M; Asakura T; Horiuchi K
    Gen Pharmacol; 1994 Jan; 25(1):205-10. PubMed ID: 8026707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bepridil as an antisickling agent: membrane internalization and cell rigidity.
    Johnson RM; Acquaye C; Féo C; Sarnaik S
    Am J Hematol; 1994 Aug; 46(4):310-8. PubMed ID: 8037182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologic and rheologic effects of the antisickling agent ethacrynic acid and its N-butylated derivative on normal and sickle erythrocytes.
    Orringer EP; Blythe DS; Whitney JA; Brockenbrough S; Abraham DJ
    Am J Hematol; 1992 Jan; 39(1):39-44. PubMed ID: 1536139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonistic activity of some phenothiazine derivatives against neurohumoral transmitters.
    Saxena PN; Johri MB
    Jpn J Pharmacol; 1973 Jun; 23(3):363-71. PubMed ID: 4146777
    [No Abstract]   [Full Text] [Related]  

  • 8. Contribution of trifluoperazine/lipid ratio and drug ionization to hemolysis.
    Malheiros SV; de Paula E; Meirelles NC
    Biochim Biophys Acta; 1998 Sep; 1373(2):332-40. PubMed ID: 9733993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-label study of phenothiazine interactions with erythrocyte ghost membranes: a possible membrane-mediated antisickling action.
    Jones GL; Woodbury DM
    J Pharmacol Exp Ther; 1978 Oct; 207(1):203-11. PubMed ID: 702341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sulfhydryl reagents on the anti-sickling activity of some membrane-interacting compounds.
    Sato T; Ohnishi ST
    Biochim Biophys Acta; 1983 Jan; 727(1):196-200. PubMed ID: 6824650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of T-cell invasion across cultured fibroblast monolayers by phenothiazine-related calmodulin inhibitors: impairment of lymphocyte motility by trifluoperazine and chlorpromazine, and alteration of the monolayer by pimozide.
    Grabski R; Dewit J; De Braekeleer J; Malicka-Blaskiewicz M; De Baetselier P; Verschueren H
    Biochem Pharmacol; 2001 May; 61(10):1313-7. PubMed ID: 11322935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antisickling role of uric acid in sickle cell disease.
    Ekeke GI; Nduka N
    Trop Geogr Med; 1987 Apr; 39(2):152-6. PubMed ID: 3629708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of erythrocyte calcium transport by cetiedil.
    Levine SN; Berkowitz LR; Orringer EP
    Pharmacology; 1988; 36(1):44-51. PubMed ID: 2829242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-ischemic and membrane stabilizing activity of calmodulin inhibitors.
    Beresewicz A
    Basic Res Cardiol; 1989; 84(6):631-45. PubMed ID: 2619700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle effects of the phenothiazines: trifluoperazine and chlorpromazine in Candida albicans.
    Sharma S; Kaur H; Khuller GK
    FEMS Microbiol Lett; 2001 May; 199(2):185-90. PubMed ID: 11377865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divalent cation channels activated by phenothiazines in membrane of rat ventricular myocytes.
    Lefevre T; Coraboeuf E; Ghazi A; Coulombe A
    J Membr Biol; 1995 Sep; 147(2):147-58. PubMed ID: 8568851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE BIPHASIC EFFECT OF PHENOTHIAZINES AND RESERPINE ON THE RELEASE OF EPINEPHRINE FROM ADRENOMEDULLARY GRANULES AND ITS DEPENDENCE ON PH.
    WEIL-MALHERBE H; POSNER HS
    Biochem Pharmacol; 1964 May; 13():685-90. PubMed ID: 14181271
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanism of local anesthetic effect on mitochondrial ATP synthase as deduced from photolabelling and inhibition studies with phenothiazine derivatives.
    Dabbeni-Sala F; Schiavo G; Palatini P
    Biochim Biophys Acta; 1990 Jul; 1026(1):117-25. PubMed ID: 2143082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenothiazines inhibit copper and endothelial cell-induced peroxidation of low density lipoprotein. A comparative study with probucol, butylated hydroxytoluene and vitamin E.
    Breugnot C; Mazière C; Salmon S; Auclair M; Santus R; Morlière P; Lenaers A; Mazière JC
    Biochem Pharmacol; 1990 Nov; 40(9):1975-80. PubMed ID: 2242028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorpromazine activates chloride currents in Xenopus oocytes.
    Quamme GA
    Biochim Biophys Acta; 1997 Feb; 1324(1):18-26. PubMed ID: 9059494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.