These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7901251)

  • 1. A new stochastic model for auditory-nerve discharge.
    Miller MI; Wang J
    J Acoust Soc Am; 1993 Oct; 94(4):2093-107. PubMed ID: 7901251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic threshold characterization of the intensity of active channel dynamical action potential generation.
    Schmich RM; Miller MI
    J Neurophysiol; 1997 Nov; 78(5):2616-30. PubMed ID: 9356411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of mechanical to neural transduction in the auditory receptor.
    Meddis R
    J Acoust Soc Am; 1986 Mar; 79(3):702-11. PubMed ID: 2870094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of spike discharge history on discharge probability and latency in frog basilar papilla units.
    Ronken DA; Bosch WR; Molnar CE
    Hear Res; 1993 Sep; 69(1-2):55-75. PubMed ID: 8226350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation of input-output models of motoneuron discharge.
    Powers RK; Binder MD
    J Neurophysiol; 1996 Jan; 75(1):367-79. PubMed ID: 8822564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for discharge patterns of primary auditory-nerve fibers.
    Geisler CD
    Brain Res; 1981 May; 212(1):198-201. PubMed ID: 6112046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal character of the auditory neural spike train.
    Teich MC
    IEEE Trans Biomed Eng; 1989 Jan; 36(1):150-60. PubMed ID: 2921061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model.
    Rothman JS; Young ED; Manis PB
    J Neurophysiol; 1993 Dec; 70(6):2562-83. PubMed ID: 8120599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation and recovery from adaptation in single fiber responses of the cat auditory nerve.
    Chimento TC; Schreiner CE
    J Acoust Soc Am; 1991 Jul; 90(1):263-73. PubMed ID: 1652600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination.
    Javel E; Viemeister NF
    J Acoust Soc Am; 2000 Feb; 107(2):908-21. PubMed ID: 10687700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge-rate dependence of refractory behavior of cat auditory-nerve fibers.
    Li J; Young ED
    Hear Res; 1993 Sep; 69(1-2):151-62. PubMed ID: 8226336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stochastic model of the electrically stimulated auditory nerve: pulse-train response.
    Bruce IC; Irlicht LS; White MW; O'Leary SJ; Dynes S; Javel E; Clark GM
    IEEE Trans Biomed Eng; 1999 Jun; 46(6):630-7. PubMed ID: 10356869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell.
    Schwid HA; Geisler CD
    J Acoust Soc Am; 1982 Nov; 72(5):1435-40. PubMed ID: 6129270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stochastic model of the electrically stimulated auditory nerve: single-pulse response.
    Bruce IC; White MW; Irlicht LS; O'Leary SJ; Dynes S; Javel E; Clark GM
    IEEE Trans Biomed Eng; 1999 Jun; 46(6):617-29. PubMed ID: 10356868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of adaptation and recovery from adaptation in the cat auditory-nerve neurophonic.
    Chimento TC; Schreiner CE
    J Acoust Soc Am; 1990 Aug; 88(2):857-64. PubMed ID: 2212311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transmission of signals by auditory-nerve fiber discharge patterns.
    Johnson DH; Swami A
    J Acoust Soc Am; 1983 Aug; 74(2):493-501. PubMed ID: 6311884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrotonic structure of regular-spiking neurons in the ventral cochlear nucleus may determine their response properties.
    White JA; Young ED; Manis PB
    J Neurophysiol; 1994 May; 71(5):1774-86. PubMed ID: 8064348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithms for removing recovery-related distortion from auditory-nerve discharge patterns.
    Miller MI
    J Acoust Soc Am; 1985 Apr; 77(4):1452-64. PubMed ID: 2985672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thresholds for primary auditory fibers using statistically defined criteria.
    Geisler CD; Deng L; Greenberg SR
    J Acoust Soc Am; 1985 Mar; 77(3):1102-9. PubMed ID: 3980864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent synaptic drive of rat medial nucleus tractus solitarius neurons: dynamic simulation of graded vesicular mobilization, release, and non-NMDA receptor kinetics.
    Schild JH; Clark JW; Canavier CC; Kunze DL; Andresen MC
    J Neurophysiol; 1995 Oct; 74(4):1529-48. PubMed ID: 8989391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.