These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7903187)

  • 1. Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus.
    Castel M; Belenky M; Cohen S; Ottersen OP; Storm-Mathisen J
    Eur J Neurosci; 1993 Apr; 5(4):368-81. PubMed ID: 7903187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative immunogold analysis reveals high glutamate levels in retinal and cortical synaptic terminals in the lateral geniculate nucleus of the macaque.
    Montero VM; Wenthold RJ
    Neuroscience; 1989; 31(3):639-47. PubMed ID: 2574426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate immunoreactivity in terminals of the retinohypothalamic tract of the brown Norwegian rat.
    de Vries MJ; Nunes Cardozo B; van der Want J; de Wolf A; Meijer JH
    Brain Res; 1993 May; 612(1-2):231-7. PubMed ID: 8101131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electron microscopic, immunogold analysis of glutamate and glutamine in terminals of rat spinocerebellar fibers.
    Ji ZQ; Aas JE; Laake J; Walberg F; Ottersen OP
    J Comp Neurol; 1991 May; 307(2):296-310. PubMed ID: 1677366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid immunoreactivity in corticospinal terminals.
    Valtschanoff JG; Weinberg RJ; Rustioni A
    Exp Brain Res; 1993; 93(1):95-103. PubMed ID: 7682185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective excitatory amino acid uptake in glutamatergic nerve terminals and in glia in the rat striatum: quantitative electron microscopic immunocytochemistry of exogenous (D)-aspartate and endogenous glutamate and GABA.
    Gundersen V; Ottersen OP; Storm-Mathisen J
    Eur J Neurosci; 1996 Apr; 8(4):758-65. PubMed ID: 9081627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological diversity and glutamate immunoreactivity of retinal terminals in the suprachiasmatic nucleus of the cat.
    Chen B; Pourcho RG
    J Comp Neurol; 1995 Oct; 361(1):108-18. PubMed ID: 8550873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicle shape and amino acids in synaptic inputs to phrenic motoneurons: do all inputs contain either glutamate or GABA?
    Murphy SM; Pilowsky PM; Llewellyn-Smith IJ
    J Comp Neurol; 1996 Sep; 373(2):200-19. PubMed ID: 8889922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural subtypes of glutamate-immunoreactive terminals on rat trigeminal motoneurones and their relationships with GABA-immunoreactive terminals.
    Yang HW; Appenteng K; Batten TF
    Exp Brain Res; 1997 Mar; 114(1):99-116. PubMed ID: 9125455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons.
    van den Pol AN
    J Neurosci; 1991 Jul; 11(7):2087-101. PubMed ID: 1676727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn, with special reference to the co-localization of glutamate, substance P and calcitonin-gene related peptide.
    Merighi A; Polak JM; Theodosis DT
    Neuroscience; 1991; 40(1):67-80. PubMed ID: 1711177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate-like immunoreactivity in retinal terminals in the nucleus of the optic tract in rabbits.
    Cardozo BN; Buijs R; Van der Want J
    J Comp Neurol; 1991 Jul; 309(2):261-70. PubMed ID: 1715891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enrichment of glutamate in zinc-containing terminals of the cat visual cortex.
    Beaulieu C; Dyck R; Cynader M
    Neuroreport; 1992 Oct; 3(10):861-4. PubMed ID: 1358251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei.
    Bae YC; Ihn HJ; Park MJ; Ottersen OP; Moritani M; Yoshida A; Shigenaga Y
    J Comp Neurol; 2000 Mar; 418(3):299-309. PubMed ID: 10701828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of glutamate-like immunoreactivity in the retinotectal terminals of the viper Vipera aspis: an electron microscope quantitative immunogold study.
    Repérant J; Rio JP; Ward R; Wasowicz M; Miceli D; Medina M; Pierre J
    J Chem Neuroanat; 1997 May; 12(4):267-80. PubMed ID: 9243346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-embedding staining for GAD67 versus postembedding staining for GABA as markers for central GABAergic terminals.
    Murphy SM; Pilowsky PM; Llewellyn-Smith IJ
    J Histochem Cytochem; 1998 Nov; 46(11):1261-8. PubMed ID: 9774625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentation of glutamate and glutamine in the lateral cervical nucleus: further evidence for glutamate as a spinocervical tract neurotransmitter.
    Kechagias S; Broman J
    J Comp Neurol; 1994 Feb; 340(4):531-40. PubMed ID: 7516350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate immunoreactivity of insular cortex afferents to the nucleus tractus solitarius in the rat: a quantitative electron microscopic study.
    Torrealba F; Müller C
    Neuroscience; 1996 Mar; 71(1):77-87. PubMed ID: 8834393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat.
    Broman J; Ottersen OP
    J Neurosci; 1992 Jan; 12(1):204-21. PubMed ID: 1370321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment of glutamate-like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn.
    Broman J; Anderson S; Ottersen OP
    Eur J Neurosci; 1993 Aug; 5(8):1050-61. PubMed ID: 7904222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.