These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 7903526)
1. Evidence for a polarized efflux system in CACO-2 cells capable of modulating cyclosporin A transport. Augustijns PF; Bradshaw TP; Gan LS; Hendren RW; Thakker DR Biochem Biophys Res Commun; 1993 Dec; 197(2):360-5. PubMed ID: 7903526 [TBL] [Abstract][Full Text] [Related]
2. CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells. Gan LS; Moseley MA; Khosla B; Augustijns PF; Bradshaw TP; Hendren RW; Thakker DR Drug Metab Dispos; 1996 Mar; 24(3):344-9. PubMed ID: 8820426 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of the coumarinic acid-based cyclic prodrug of the opioid peptide DADLE. Tang F; Borchardt RT Pharm Res; 2002 Jun; 19(6):787-93. PubMed ID: 12134948 [TBL] [Abstract][Full Text] [Related]
4. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Wu X; Whitfield LR; Stewart BH Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Horie K; Tang F; Borchardt RT Pharm Res; 2003 Feb; 20(2):161-8. PubMed ID: 12636153 [TBL] [Abstract][Full Text] [Related]
6. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Hosoya KI; Kim KJ; Lee VH Pharm Res; 1996 Jun; 13(6):885-90. PubMed ID: 8792427 [TBL] [Abstract][Full Text] [Related]
7. Carrier mechanisms involved in the transepithelial transport of bis(POM)-PMEA and its metabolites across Caco-2 monolayers. Annaert P; Van Gelder J; Naesens L; De Clercq E; Van den Mooter G; Kinget R; Augustijns P Pharm Res; 1998 Aug; 15(8):1168-73. PubMed ID: 9706045 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of an acyloxyalkoxy-based cyclic prodrug of the opioid peptide DADLE. Tang F; Borchardt RT Pharm Res; 2002 Jun; 19(6):780-6. PubMed ID: 12134947 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of P-glycoprotein-mediated vinblastine transport across HCT-8 intestinal carcinoma monolayers by verapamil, cyclosporine A and SDZ PSC 833 in dependence on extracellular pH. Zacherl J; Hamilton G; Thalhammer T; Riegler M; Cosentini EP; Ellinger A; Bischof G; Schweitzer M; Teleky B; Koperna T Cancer Chemother Pharmacol; 1994; 34(2):125-32. PubMed ID: 7910786 [TBL] [Abstract][Full Text] [Related]
10. Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P-glycoprotein. Tsuji A; Tamai I; Sakata A; Tenda Y; Terasaki T Biochem Pharmacol; 1993 Sep; 46(6):1096-9. PubMed ID: 8105783 [TBL] [Abstract][Full Text] [Related]
11. Transcellular and lipophilic complex-enhanced intestinal absorption of human growth hormone. Wu SJ; Robinson JR Pharm Res; 1999 Aug; 16(8):1266-72. PubMed ID: 10468030 [TBL] [Abstract][Full Text] [Related]
12. Transport characteristics of ebastine and its metabolites across human intestinal epithelial Caco-2 cell monolayers. Imamura Y; Shimizu K; Yamashita F; Yamaoka K; Takakura Y; Hashida M Biol Pharm Bull; 2001 Aug; 24(8):930-4. PubMed ID: 11510488 [TBL] [Abstract][Full Text] [Related]
13. Transport characteristics of peptidomimetics. Effect of the pyrrolinone bioisostere on transport across Caco-2 cell monolayers. Sudoh M; Pauletti GM; Yao W; Moser W; Yokoyama A; Pasternak A; Sprengeler PA; Smith AB; Hirschmann R; Borchardt RT Pharm Res; 1998 May; 15(5):719-25. PubMed ID: 9619780 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. Nerurkar MM; Ho NF; Burton PS; Vidmar TJ; Borchardt RT J Pharm Sci; 1997 Jul; 86(7):813-21. PubMed ID: 9232522 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Liang E; Proudfoot J; Yazdanian M Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220 [TBL] [Abstract][Full Text] [Related]
16. Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells. Zhu X; Zhang X; Ma G; Yan J; Wang H; Yang Q J Pharm Pharm Sci; 2011; 14(3):325-35. PubMed ID: 21824448 [TBL] [Abstract][Full Text] [Related]
17. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell. Ho NF; Burton PS; Conradi RA; Barsuhn CL J Pharm Sci; 1995 Jan; 84(1):21-7. PubMed ID: 7714738 [TBL] [Abstract][Full Text] [Related]
18. Cotransport of macrolide and fluoroquinolones, a beneficial interaction reversing P-glycoprotein efflux. Sikri V; Pal D; Jain R; Kalyani D; Mitra AK Am J Ther; 2004; 11(6):433-42. PubMed ID: 15543082 [TBL] [Abstract][Full Text] [Related]
19. Nucleobase- and p-glycoprotein-mediated transport of AG337 in a Caco-2 cell culture model. Hu M; Chen J Mol Pharm; 2004; 1(3):194-200. PubMed ID: 15981922 [TBL] [Abstract][Full Text] [Related]
20. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Dahan A; Amidon GL Am J Physiol Gastrointest Liver Physiol; 2009 Aug; 297(2):G371-7. PubMed ID: 19541926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]