These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7903799)

  • 1. Electrophysiological and morphological properties of granule cells: patch-clamp recordings of newborn rabbit olfactory bulb slices.
    Bufler J; Opitz T; Hatt H
    Neurosci Lett; 1993 Oct; 161(2):129-32. PubMed ID: 7903799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patch-clamp recordings of spiking and nonspiking interneurons from rabbit olfactory bulb slices: membrane properties and ionic currents.
    Bufler J; Zufall F; Franke C; Hatt H
    J Comp Physiol A; 1992 Feb; 170(2):145-52. PubMed ID: 1374798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical properties of periglomerular cells in the frog olfactory bulb.
    Magherini PC; Bardoni R; Belluzzi O
    Arch Ital Biol; 1997 Mar; 135(2):195-203. PubMed ID: 9101029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of Ca(2+)-mediated action potentials in GABAergic local circuit neurones of rat thalamus by a transient K+ current.
    Pape HC; Budde T; Mager R; Kisvárday ZF
    J Physiol; 1994 Aug; 478 Pt 3(Pt 3):403-22. PubMed ID: 7965855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium currents in periglomerular cells of frog olfactory bulb in vitro.
    Bardoni R; Puopolo M; Magherini PC; Belluzzi O
    Neurosci Lett; 1996 May; 210(2):95-8. PubMed ID: 8783281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus.
    Liu YB; Lio PA; Pasternak JF; Trommer BL
    J Neurophysiol; 1996 Aug; 76(2):1074-88. PubMed ID: 8871221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs.
    Schoppa NE
    Neuron; 2006 Jan; 49(2):271-83. PubMed ID: 16423700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-cell K+ currents in identified olfactory bulb output neurones of rats.
    Wang XY; McKenzie JS; Kemm RE
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):63-77. PubMed ID: 8745279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.
    Bhalla US; Bower JM
    J Neurophysiol; 1993 Jun; 69(6):1948-65. PubMed ID: 7688798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patch clamp study of histamine activated potassium currents on rabbit olfactory bulb neurons.
    Jahn K; Haas HL; Hatt H
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Oct; 352(4):386-93. PubMed ID: 8532066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea).
    Cinelli AR; Salzberg BM
    J Neurophysiol; 1990 Dec; 64(6):1767-90. PubMed ID: 1981575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAergic and glutamatergic synaptic input to identified granule cells in salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1994 Mar; 475(3):419-30. PubMed ID: 8006826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic organization and neurotransmitters in the rat accessory olfactory bulb.
    Jia C; Chen WR; Shepherd GM
    J Neurophysiol; 1999 Jan; 81(1):345-55. PubMed ID: 9914294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium current in periglomerular cells of frog olfactory bulb in vitro.
    Bardoni R; Magherini PC; Belluzzi O
    Brain Res; 1995 Dec; 703(1-2):19-25. PubMed ID: 8719611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition.
    Heinbockel T; Laaris N; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):858-70. PubMed ID: 17093122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K+ currents in rabbit esophageal muscularis mucosae.
    Akbarali HI
    Am J Physiol; 1993 May; 264(5 Pt 1):G1001-7. PubMed ID: 8498506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices.
    Khazipov R; Leinekugel X; Khalilov I; Gaiarsa JL; Ben-Ari Y
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):763-72. PubMed ID: 9051587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appearance of a fast inactivating voltage-dependent K+ currents in developing cerebellar granule cells in vitro.
    Wakazono Y; Kurahashi T; Nakahira K; Nagata I; Takayama C; Inoue Y; Kaneko A; Ikenaka K
    Neurosci Res; 1997 Dec; 29(4):291-301. PubMed ID: 9527620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large conductance Ca(2+)-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones.
    Crest M; Gola M
    J Physiol; 1993 Jun; 465():265-87. PubMed ID: 8229836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single voltage-gated K+ channels and their functions in small dorsal root ganglion neurones of rat.
    Safronov BV; Bischoff U; Vogel W
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):393-408. PubMed ID: 8782104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.