These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 7904303)
1. Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. Mione MC; Danevic C; Boardman P; Harris B; Parnavelas JG J Neurosci; 1994 Jan; 14(1):107-23. PubMed ID: 7904303 [TBL] [Abstract][Full Text] [Related]
2. Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex. Blanton MG; Kriegstein AR J Comp Neurol; 1991 Aug; 310(4):571-92. PubMed ID: 1682348 [TBL] [Abstract][Full Text] [Related]
3. Neuronal clones in the cerebral cortex show morphological and neurotransmitter heterogeneity during development. Lavdas AA; Mione MC; Parnavelas JG Cereb Cortex; 1996; 6(3):490-7. PubMed ID: 8670674 [TBL] [Abstract][Full Text] [Related]
4. Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells. Luskin MB; Parnavelas JG; Barfield JA J Neurosci; 1993 Apr; 13(4):1730-50. PubMed ID: 8463848 [TBL] [Abstract][Full Text] [Related]
5. Calcium-binding protein immunoreactivity in the piriform cortex of the guinea-pig: selective staining of subsets of non-GABAergic neurons by calretinin. Frassoni C; Radici C; Spreafico R; de Curtis M Neuroscience; 1998 Mar; 83(1):229-37. PubMed ID: 9466412 [TBL] [Abstract][Full Text] [Related]
6. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. Soriano E; Del Río JA; Martínez A; Supèr H J Comp Neurol; 1994 Apr; 342(4):571-95. PubMed ID: 7913715 [TBL] [Abstract][Full Text] [Related]
7. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. McDonald AJ; Mascagni F Neuroscience; 2001; 105(3):681-93. PubMed ID: 11516833 [TBL] [Abstract][Full Text] [Related]
8. The cell lineage of neuronal subtypes in the mammalian cerebral cortex. Parnavelas JG; Mione MC; Lavdas A Ciba Found Symp; 1995; 193():41-58; discussion 59-70. PubMed ID: 8727486 [TBL] [Abstract][Full Text] [Related]
9. Glial cell lineages in the rat cerebral cortex. Parnavelas JG Exp Neurol; 1999 Apr; 156(2):418-29. PubMed ID: 10328946 [TBL] [Abstract][Full Text] [Related]
10. Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Parnavelas JG; Barfield JA; Franke E; Luskin MB Cereb Cortex; 1991; 1(6):463-8. PubMed ID: 1822752 [TBL] [Abstract][Full Text] [Related]
11. Transient colocalization of parvalbumin and calbindin D28k in the postnatal cerebral cortex: evidence for a phenotypic shift in developing nonpyramidal neurons. Alcantara S; de Lecea L; Del Rio JA; Ferrer I; Soriano E Eur J Neurosci; 1996 Jul; 8(7):1329-39. PubMed ID: 8758940 [TBL] [Abstract][Full Text] [Related]
12. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. Condé F; Lund JS; Jacobowitz DM; Baimbridge KG; Lewis DA J Comp Neurol; 1994 Mar; 341(1):95-116. PubMed ID: 8006226 [TBL] [Abstract][Full Text] [Related]
13. Thalamic and basal forebrain afferents modulate the development of parvalbumin and calbindin D28k immunoreactivity in the barrel cortex of the rat. Alcantara S; Soriano E; Ferrer I Eur J Neurosci; 1996 Jul; 8(7):1522-34. PubMed ID: 8758960 [TBL] [Abstract][Full Text] [Related]
14. Development of calretinin immunoreactivity in the neocortex of the rat. Fonseca M; dél Río JA; Martínez A; Gómez S; Soriano E J Comp Neurol; 1995 Oct; 361(1):177-92. PubMed ID: 8550878 [TBL] [Abstract][Full Text] [Related]
15. Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. Conti F; Melone M; De Biasi S; Minelli A; Brecha NC; Ducati A J Comp Neurol; 1998 Jun; 396(1):51-63. PubMed ID: 9623887 [TBL] [Abstract][Full Text] [Related]
16. Cajal-Retzius neurons identified by GABA immunohistochemistry in layer I of the rat cerebral cortex. Imamoto K; Karasawa N; Isomura G; Nagatsu I Neurosci Res; 1994 Jul; 20(1):101-5. PubMed ID: 7984336 [TBL] [Abstract][Full Text] [Related]
17. Combinations of AMPA receptor subunit expression in individual cortical neurons correlate with expression of specific calcium-binding proteins. Kondo M; Sumino R; Okado H J Neurosci; 1997 Mar; 17(5):1570-81. PubMed ID: 9030617 [TBL] [Abstract][Full Text] [Related]
18. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Alcántara S; Ferrer I; Soriano E Anat Embryol (Berl); 1993 Jul; 188(1):63-73. PubMed ID: 8214625 [TBL] [Abstract][Full Text] [Related]
19. Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical cultures. Trinh HH; Reid J; Shin E; Liapi A; Parnavelas JG; Nadarajah B Eur J Neurosci; 2006 Dec; 24(11):2967-77. PubMed ID: 17156358 [TBL] [Abstract][Full Text] [Related]
20. Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. Mikkonen M; Soininen H; Pitkänen A J Comp Neurol; 1997 Nov; 388(1):64-88. PubMed ID: 9364239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]