These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7904562)

  • 1. Cyclic guanosine monophosphate mediates penile erection in the rat.
    Martinez-Piñeiro L; Trigo-Rocha F; Hsu GL; von Heyden B; Lue TF; Tanagho EA
    Eur Urol; 1993; 24(4):492-9. PubMed ID: 7904562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular mechanism of penile erection in monkeys.
    Trigo-Rocha F; Hsu GL; Donatucci CF; Martinez-Piñeiro L; Lue TF; Tanagho EA
    Neurourol Urodyn; 1994; 13(1):71-80. PubMed ID: 8156077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of cyclic adenosine monophosphate, cyclic guanosine monophosphate, endothelium and nonadrenergic, noncholinergic neurotransmission in canine penile erection.
    Trigo-Rocha F; Hsu GL; Donatucci CF; Lue TF
    J Urol; 1993 Apr; 149(4):872-7. PubMed ID: 8384275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone.
    Azadzoi KM; Kim N; Brown ML; Goldstein I; Cohen RA; Saenz de Tejada I
    J Urol; 1992 Jan; 147(1):220-5. PubMed ID: 1370329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of papaverine and vasointestinal polypeptide on penile and vascular cAMP and cGMP in control and diabetic animals: an in vitro study.
    Miller MA; Morgan RJ; Thompson CS; Mikhailidis DP; Jeremy JY
    Int J Impot Res; 1995 Jun; 7(2):91-100. PubMed ID: 7496446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cyclic adenosine monophosphate in prostaglandin E1-induced penile erection in rabbits.
    Lin JS; Lin YM; Jou YC; Cheng JT
    Eur Urol; 1995; 28(3):259-65. PubMed ID: 8536783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide and cGMP: mediators of pelvic nerve-stimulated erection in dogs.
    Trigo-Rocha F; Aronson WJ; Hohenfellner M; Ignarro LJ; Rajfer J; Lue TF
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H419-22. PubMed ID: 8383456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of distinct cAMP- and cGMP-dependent pathways by relaxant agents in isolated gastric muscle cells.
    Jin JG; Murthy KS; Grider JR; Makhlouf GM
    Am J Physiol; 1993 Mar; 264(3 Pt 1):G470-7. PubMed ID: 8384796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NO/cyclic GMP pathway mediates the relaxation of feline lower oesophageal sphincter.
    Jun CH; Lee TS; Sohn UD
    Auton Autacoid Pharmacol; 2003 Jun; 23(3):159-66. PubMed ID: 14690490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of prostaglandin E1-induced relaxation in penile resistance arteries.
    Ruiz Rubio JL; Hernández M; Rivera de los Arcos L; Martínez AC; García-Sacristán A; Prieto D
    J Urol; 2004 Feb; 171(2 Pt 1):968-73. PubMed ID: 14713863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta.
    Yu SM; Kuo SC
    Br J Pharmacol; 1995 Apr; 114(8):1587-94. PubMed ID: 7599926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgenic maintenance of the rat erectile response via a non-nitric-oxide-dependent pathway.
    Reilly CM; Lewis RW; Stopper VS; Mills TM
    J Androl; 1997; 18(6):588-94. PubMed ID: 9432131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of stimulators and inhibitors of cyclic nucleotides on lower esophageal sphincter.
    Rattan S; Moummi C
    J Pharmacol Exp Ther; 1989 Feb; 248(2):703-9. PubMed ID: 2537411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human alpha-calcitonin gene-related peptide stimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracic aorta by releasing nitric oxide.
    Gray DW; Marshall I
    Br J Pharmacol; 1992 Nov; 107(3):691-6. PubMed ID: 1361870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide signaling in cavernous smooth muscle.
    Lin CS; Lin G; Lue TF
    J Sex Med; 2005 Jul; 2(4):478-91. PubMed ID: 16422842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission.
    Rajfer J; Aronson WJ; Bush PA; Dorey FJ; Ignarro LJ
    N Engl J Med; 1992 Jan; 326(2):90-4. PubMed ID: 1309211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cyclic GMP elevation on isoprenaline-induced increase in cyclic AMP and relaxation in rat aortic smooth muscle: role of phosphodiesterase 3.
    Delpy E; Coste H; Gouville AC
    Br J Pharmacol; 1996 Oct; 119(3):471-8. PubMed ID: 8894166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of nitric oxide-dependent relaxation of pig tracheal smooth muscle by inhibitors of guanylyl cyclase and calcium activated potassium channels.
    Kannan MS; Johnson DE
    Life Sci; 1995; 56(25):2229-38. PubMed ID: 7540707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide relaxes bovine ciliary muscle contracted by carbachol through elevation of cyclic GMP.
    Kamikawatoko S; Tokoro T; Ishida A; Masuda H; Hamasaki H; Sato J; Azuma H
    Exp Eye Res; 1998 Jan; 66(1):1-7. PubMed ID: 9533825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway.
    Haefliger IO; Zschauer A; Anderson DR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):991-7. PubMed ID: 7907321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.