These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 790475)

  • 1. High-resolution nuclear magnetic resonance investigations of the structure of tRNA in solution.
    Kearns DR
    Prog Nucleic Acid Res Mol Biol; 1976; 18():91-149. PubMed ID: 790475
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigation of the structure of native and denatured conformations of tRNALeu3 by high-resolution nuclear magnetic resonance.
    Kearns DR; Wong YP; Chang SH; Hawkins E
    Biochemistry; 1974 Nov; 13(23):4736-46. PubMed ID: 4609465
    [No Abstract]   [Full Text] [Related]  

  • 3. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives.
    Daniel WE; Cohn M
    Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of charged and uncharged tRNA.
    Wong YP; Reid BR; Kearns DR
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2193-5. PubMed ID: 4599618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 19F nuclear magnetic resonance as a probe of anticodon structure in 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Gollnick P; Hardin CC; Horowitz J
    J Mol Biol; 1987 Oct; 197(3):571-84. PubMed ID: 2450205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe.
    Johnston PD; Redfield AG
    Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA.
    Crothers DM; Cole PE; Hilbers CW; Shulman RG
    J Mol Biol; 1974 Jul; 87(1):63-88. PubMed ID: 4610153
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of the removal of the Y base on the conformation of yeast tRNA.
    Kearns DR; Wong KL; Wong YP
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3843-6. PubMed ID: 4590172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorine-19 nuclear magnetic resonance as a probe of the solution structure of mutants of 5-fluorouracil-substituted Escherichia coli valine tRNA.
    Chu WC; Feiz V; Derrick WB; Horowitz J
    J Mol Biol; 1992 Oct; 227(4):1164-72. PubMed ID: 1279180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance of the base-pairing structure of the native and denatured conformers of Escherichia coli transfer RNATrp.
    Jones CR; Kearns DR
    J Mol Biol; 1976 Jun; 103(4):747-64. PubMed ID: 781285
    [No Abstract]   [Full Text] [Related]  

  • 12. Transfer RNA: molecular structure, sequence, and properties.
    Rich A; RajBhandary UL
    Annu Rev Biochem; 1976; 45():805-60. PubMed ID: 60910
    [No Abstract]   [Full Text] [Related]  

  • 13. Nuclear magnetic resonance studies of codon-anticodon interaction in tRNAPhe. I. Effect of binding complementary tetra and pentanucleotides to the anticodon.
    Geerdes HA; Van Boom JH; Hilbers CW
    J Mol Biol; 1980 Sep; 142(2):195-217. PubMed ID: 6160254
    [No Abstract]   [Full Text] [Related]  

  • 14. Three-dimensional structure of transfer RNA.
    Kim SH
    Prog Nucleic Acid Res Mol Biol; 1976; 17():181-216. PubMed ID: 778921
    [No Abstract]   [Full Text] [Related]  

  • 15. The binding of ethidium bromide to different conformations of tRNA. Unfolding of tertiary structure.
    Urbanke C; Römer R; Maass G
    Eur J Biochem; 1973 Mar; 33(3):511-6. PubMed ID: 4571499
    [No Abstract]   [Full Text] [Related]  

  • 16. Nuclear magnetic resonance investigation of the base-pairing structure of Escherichia coli tRNATyr monomer and dimer conformations.
    Rordorf BF; Kearns DR
    Biochemistry; 1976 Jul; 15(15):3320-30. PubMed ID: 782517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal unfolding of yeast glycine transfer RNA.
    Hilbers CW; Robillard GT; Shulamn RG; Blake RD; Webb PK; Fresco R; Riesner D
    Biochemistry; 1976 May; 15(9):1874-82. PubMed ID: 773427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution nuclear magnetic resonance studies of double helical polynucleotides.
    Kearns DR
    Annu Rev Biophys Bioeng; 1977; 6():477-523. PubMed ID: 326152
    [No Abstract]   [Full Text] [Related]  

  • 19. Three-dimensional structure of transfer RNA and its functional implications.
    Kim SH
    Adv Enzymol Relat Areas Mol Biol; 1978; 46():279-315. PubMed ID: 205095
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrogen bonding in yeast phenylalanine transfer RNA.
    Quigley GJ; Wang AH; Seeman NC; Suddath FL; Rich A; Sussman JL; Kim SH
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4866-70. PubMed ID: 1108007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.