These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 790475)
21. Study of the phosphorescent bases of yeast phenylalanine transfer RNA with the aid of optical detection of magnetic resonance. Hoover RJ; Luk KF; Maki AH J Mol Biol; 1974 Oct; 89(2):363-78. PubMed ID: 4613861 [No Abstract] [Full Text] [Related]
22. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe. Cabello-Villegas J; Tworowska I; Nikonowicz EP Biochemistry; 2004 Jan; 43(1):55-66. PubMed ID: 14705931 [TBL] [Abstract][Full Text] [Related]
23. Structure-function relations in tRNA. Bock RM Basic Life Sci; 1973; 1():189-96. PubMed ID: 4589676 [No Abstract] [Full Text] [Related]
24. Ring-current shifts in the 300 MHz nuclear magnetic resonance spectra of six purified transfer RNA molecules. Shulman RG; Hilbers CW J Mol Biol; 1973 Jun; 78(1):57-69. PubMed ID: 4581295 [No Abstract] [Full Text] [Related]
25. Recognition in nucleic acids and the anticodon families. Ninio J Prog Nucleic Acid Res Mol Biol; 1973; 13():301-37. PubMed ID: 4573490 [No Abstract] [Full Text] [Related]
26. Proton magnetic relaxation studies of marganous complexes of transfer RNA and related compounds. Cohn M; Danchin A; Grunberg-Manago M J Mol Biol; 1969 Jan; 39(1):199-217. PubMed ID: 4329286 [No Abstract] [Full Text] [Related]
27. Kinetics of ethidium bromide binding as a probe of transfer ribonucleic acid structure. Tritton TR; Mohr SC Biochemistry; 1973 Feb; 12(5):905-14. PubMed ID: 4568769 [No Abstract] [Full Text] [Related]
28. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs. Dao V; Guenther RH; Agris PF Biochemistry; 1992 Nov; 31(45):11012-9. PubMed ID: 1445839 [TBL] [Abstract][Full Text] [Related]
29. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop. Gorenstein DG; Goldfield EM Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140 [TBL] [Abstract][Full Text] [Related]
30. Aminoacylation of fragment combinations from yeast tRNA phe . Thiebe R; Harbers K; Zachau HG Eur J Biochem; 1972 Mar; 26(1):144-52. PubMed ID: 4557765 [No Abstract] [Full Text] [Related]
31. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268 [TBL] [Abstract][Full Text] [Related]
32. High resolution NMR study of the melting of yeast tRNA Phe. Hilbers CW; Shulman RG; Kim SH Biochem Biophys Res Commun; 1973 Dec; 55(3):953-60. PubMed ID: 4586623 [No Abstract] [Full Text] [Related]
33. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
34. High resolution nuclear magnetic resonance study of base pairing in the native and denaturated conformers of transfer RNA Leu 3 . Wong YP; Kearns DR; Shulman RG; Yamane T; Chang S; Chirikjian JG; Fresco JR J Mol Biol; 1973 Mar; 74(3):403-6. PubMed ID: 4571235 [No Abstract] [Full Text] [Related]
35. Investigation of the base-pairing structure of the anticodon hairpin from E. coli initiator tRNA by high-resolution nmr. Wong KL; Kearns DR Biopolymers; 1974; 13(2):371-80. PubMed ID: 4594852 [No Abstract] [Full Text] [Related]
36. Properties of a dimer of tRNA I Tyr 1 (Escherichia coli). Yang SK; Söll DG; Crothers DM Biochemistry; 1972 Jun; 11(12):2311-20. PubMed ID: 4555033 [No Abstract] [Full Text] [Related]
37. Identification of a unique ethidium bromide binding site on yeast tRNAPhe by high resolution (300 MHz) nuclear magnetic resonance. Jones CR; Kearns DR Biochemistry; 1975 Jun; 14(12):2660-5. PubMed ID: 1096934 [TBL] [Abstract][Full Text] [Related]
38. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A; Sissler M; Florentz C; Giegé R Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797 [TBL] [Abstract][Full Text] [Related]
39. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity. Rogers KC; Söll D Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112 [TBL] [Abstract][Full Text] [Related]
40. High-resolution NMR investigation of base pairing structure of transfer RNA. Kearns DR; Lightfoot DR; Wong KL; Wong YP; Reid BR; Cary L; Shulman RG Ann N Y Acad Sci; 1973 Dec; 222():324-36. PubMed ID: 4594296 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]