These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7904836)

  • 21. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo.
    Lorimer GH
    FASEB J; 1996 Jan; 10(1):5-9. PubMed ID: 8566548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolving improved Synechococcus Rubisco functional expression in Escherichia coli.
    Mueller-Cajar O; Whitney SM
    Biochem J; 2008 Sep; 414(2):205-14. PubMed ID: 18484948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of the Rubisco operon from prokaryotes to algae: structure and analysis of the rbcS gene of the brown alga Pylaiella littoralis.
    Assali NE; Martin WF; Sommerville CC; Loiseaux-de Goër S
    Plant Mol Biol; 1991 Oct; 17(4):853-63. PubMed ID: 1840691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyletic origin of the plastids.
    Valentin K; Zetsche K
    Mol Gen Genet; 1990 Jul; 222(2-3):425-30. PubMed ID: 2274041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco.
    Whitney SM; Andrews TJ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14738-43. PubMed ID: 11724961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opposing effects of folding and assembly chaperones on evolvability of Rubisco.
    Durão P; Aigner H; Nagy P; Mueller-Cajar O; Hartl FU; Hayer-Hartl M
    Nat Chem Biol; 2015 Feb; 11(2):148-55. PubMed ID: 25558973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency.
    Greene DN; Whitney SM; Matsumura I
    Biochem J; 2007 Jun; 404(3):517-24. PubMed ID: 17391103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.
    Whitney SM; Andrews TJ
    Plant Cell; 2001 Jan; 13(1):193-205. PubMed ID: 11158539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent.
    Viitanen PV; Lubben TH; Reed J; Goloubinoff P; O'Keefe DP; Lorimer GH
    Biochemistry; 1990 Jun; 29(24):5665-71. PubMed ID: 1974461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Rubisco activase (rca) gene is located downstream from rbcS in Anabaena sp. strain CA and is detected in other Anabaena/Nostoc strains.
    Li LA; Gibson JL; Tabita FR
    Plant Mol Biol; 1993 Mar; 21(5):753-64. PubMed ID: 8467074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximum activity of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene.
    Li LA; Tabita FR
    J Bacteriol; 1997 Jun; 179(11):3793-6. PubMed ID: 9171433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase.
    Werneke JM; Zielinski RE; Ogren WL
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):787-91. PubMed ID: 3277181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From chaperonins to Rubisco assembly and metabolic repair.
    Hayer-Hartl M
    Protein Sci; 2017 Dec; 26(12):2324-2333. PubMed ID: 28960553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression and assembly of active cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase in Escherichia coli containing stoichiometric amounts of large and small subunits.
    Tabita FR; Small CL
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6100-3. PubMed ID: 3929249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rubisco Accumulation Factor 1 from Thermosynechococcus elongatus participates in the final stages of ribulose-1,5-bisphosphate carboxylase/oxygenase assembly in Escherichia coli cells and in vitro.
    Kolesinski P; Belusiak I; Czarnocki-Cieciura M; Szczepaniak A
    FEBS J; 2014 Sep; 281(17):3920-32. PubMed ID: 25041569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression, purification, and characterization of recombinant ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit nepsilon-methyltransferase.
    Zheng Q; Simel EJ; Klein PE; Royer MT; Houtz RL
    Protein Expr Purif; 1998 Oct; 14(1):104-12. PubMed ID: 9758757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical synthesis of 10 kDa chaperonin. Biological activity suggests chaperonins do not require other molecular chaperones.
    Mascagni P; Tonolo M; Ball H; Lim M; Ellis RJ; Coates A
    FEBS Lett; 1991 Jul; 286(1-2):201-3. PubMed ID: 1677897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis.
    Bertsch U; Soll J
    Plant Mol Biol; 1995 Dec; 29(5):1039-55. PubMed ID: 8555447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleus-independent control of the rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae.
    Minoda A; Weber AP; Tanaka K; Miyagishima SY
    Plant Physiol; 2010 Nov; 154(3):1532-40. PubMed ID: 20813908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The complexity of chloroplast chaperonins.
    Vitlin Gruber A; Nisemblat S; Azem A; Weiss C
    Trends Plant Sci; 2013 Dec; 18(12):688-94. PubMed ID: 24035661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.