These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 7904969)
21. Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis. Suzawa K; Yukita A; Hayata T; Goto T; Danno H; Michiue T; Cho KW; Asashima M Int J Dev Biol; 2007; 51(3):183-90. PubMed ID: 17486538 [TBL] [Abstract][Full Text] [Related]
22. Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis. Bardine N; Donow C; Korte B; Durston AJ; Knöchel W; Wacker SA Dev Dyn; 2009 Mar; 238(3):755-65. PubMed ID: 19235717 [TBL] [Abstract][Full Text] [Related]
23. Ventral cell rearrangements contribute to anterior-posterior axis lengthening between neurula and tailbud stages in Xenopus laevis. Larkin K; Danilchik MV Dev Biol; 1999 Dec; 216(2):550-60. PubMed ID: 10642792 [TBL] [Abstract][Full Text] [Related]
24. eFGF is expressed in the dorsal midline of Xenopus laevis. Isaacs HV; Pownall ME; Slack JM Int J Dev Biol; 1995 Aug; 39(4):575-9. PubMed ID: 8619955 [TBL] [Abstract][Full Text] [Related]
25. Retinoic acid gradients during limb regeneration. Scadding SR; Maden M Dev Biol; 1994 Apr; 162(2):608-17. PubMed ID: 8150219 [TBL] [Abstract][Full Text] [Related]
26. Expression patterns of Src-family tyrosine kinases during Xenopus laevis development. Ferjentsik Z; Sindelka R; Jonak J Int J Dev Biol; 2009; 53(1):163-8. PubMed ID: 19123139 [TBL] [Abstract][Full Text] [Related]
27. Refinement of gene expression patterns in the early Xenopus embryo. Wardle FC; Smith JC Development; 2004 Oct; 131(19):4687-96. PubMed ID: 15329341 [TBL] [Abstract][Full Text] [Related]
28. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486 [TBL] [Abstract][Full Text] [Related]
29. Retinoic acid metabolizing factor xCyp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis. Tanibe M; Michiue T; Yukita A; Danno H; Ikuzawa M; Ishiura S; Asashima M Int J Dev Biol; 2008; 52(7):893-901. PubMed ID: 18956319 [TBL] [Abstract][Full Text] [Related]
30. The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus. Poznanski A; Keller R Dev Biol; 1997 Apr; 184(2):351-66. PubMed ID: 9133441 [TBL] [Abstract][Full Text] [Related]
31. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders. Whiteley M; Mathers PH; Jamrich M Dev Genet; 1997; 20(2):145-51. PubMed ID: 9144925 [TBL] [Abstract][Full Text] [Related]
32. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms. Pan FC; Chen Y; Bayha E; Pieler T Mech Dev; 2007 Aug; 124(7-8):518-31. PubMed ID: 17643968 [TBL] [Abstract][Full Text] [Related]
33. Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation. Cao Y; Siegel D; Knöchel W Mech Dev; 2006 Aug; 123(8):614-25. PubMed ID: 16860542 [TBL] [Abstract][Full Text] [Related]
34. Identification of endogenous retinoids, enzymes, binding proteins, and receptors during early postimplantation development in mouse: important role of retinal dehydrogenase type 2 in synthesis of all-trans-retinoic acid. Ulven SM; Gundersen TE; Weedon MS; Landaas VO; Sakhi AK; Fromm SH; Geronimo BA; Moskaug JO; Blomhoff R Dev Biol; 2000 Apr; 220(2):379-91. PubMed ID: 10753524 [TBL] [Abstract][Full Text] [Related]
35. Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Sive HL; Draper BW; Harland RM; Weintraub H Genes Dev; 1990 Jun; 4(6):932-42. PubMed ID: 2384214 [TBL] [Abstract][Full Text] [Related]
36. Xenopus laevis: a model system for the study of embryonic retinoid metabolism. III. Isomerization and metabolism of all-trans-retinoic acid and 9-cis-retinoic acid and their dysmorphogenic effects in embryos during neurulation. Kraft JC; Juchau MR Drug Metab Dispos; 1995 Oct; 23(10):1058-71. PubMed ID: 8654193 [TBL] [Abstract][Full Text] [Related]
37. Retinoic acid receptors and nuclear orphan receptors in the development of Xenopus laevis. Dreyer C; Ellinger-Ziegelbauer H Int J Dev Biol; 1996 Feb; 40(1):255-62. PubMed ID: 8735936 [TBL] [Abstract][Full Text] [Related]
39. Retinoic acid induces changes in the localization of homeobox proteins in the antero-posterior axis of Xenopus laevis embryos. López SL; Carrasco AE Mech Dev; 1992 Feb; 36(3):153-64. PubMed ID: 1349239 [TBL] [Abstract][Full Text] [Related]
40. The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development. Kraft JC; Schuh T; Juchau M; Kimelman D Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3067-71. PubMed ID: 8159708 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]