These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 790505)

  • 61. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species.
    Saetre P; Stark JM
    Oecologia; 2005 Jan; 142(2):247-60. PubMed ID: 15490245
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds.
    Mrozik A; Piotrowska-Seget Z
    Microbiol Res; 2010 Jul; 165(5):363-75. PubMed ID: 19735995
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-affinity ammonium transporters and nitrogen sensing in mycorrhizas.
    Javelle A; André B; Marini AM; Chalot M
    Trends Microbiol; 2003 Feb; 11(2):53-5. PubMed ID: 12598122
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [The influence of mineralization-processes on the nutrient-availability of soils. I. Transformation of the organic matter and formation of organic acids (author's transl)].
    Müller G; Förster I
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1974; 129(7):617-31. PubMed ID: 4480509
    [No Abstract]   [Full Text] [Related]  

  • 65. Toxicological assessment of biodegraded malathion in albino mice.
    Barlas NE
    Bull Environ Contam Toxicol; 1996 Nov; 57(5):705-12. PubMed ID: 8791544
    [No Abstract]   [Full Text] [Related]  

  • 66. Studies on the activity of rumen protozoa. I. Role of ammonium ions and free amino acids in the regulation of nitrogen metabolism in rumen protozoa.
    Ahuja SP; Sarmah TC
    Zentralbl Veterinarmed A; 1979 Aug; 26(6):482-92. PubMed ID: 44418
    [No Abstract]   [Full Text] [Related]  

  • 67. The microbiology of aquatic oil spills.
    Bartha R
    Adv Appl Microbiol; 1977; 22():225-66. PubMed ID: 337769
    [No Abstract]   [Full Text] [Related]  

  • 68. Effect of fungicides, captafol and chlorothalonil, on microbial and enzymatic activities in mineral soil.
    Tu CM
    J Environ Sci Health B; 1993 Feb; 28(1):67-80. PubMed ID: 8426061
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [The effect of biocides on the microflora of soils and their degradation. 4. The influence of substances inhibiting the straw decomposition on the nitrogen transformation (author's transl)].
    Höflich G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(2):155-62. PubMed ID: 878709
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Microbial metabolism of n-methylcarbamate insecticide. III. Time course in metabolism of o-sec-butylphenyl n-methylcarbamate by Aspergillus niger and species differences among soil fungi.
    Suzuki T; Takeda M
    Chem Pharm Bull (Tokyo); 1976 Sep; 24(9):1983-7. PubMed ID: 991354
    [No Abstract]   [Full Text] [Related]  

  • 71. [Microbiological aspects of sewage treatment].
    Arkhipchenko IA
    Izv Akad Nauk SSSR Biol; 1983; (5):744-58. PubMed ID: 6630717
    [No Abstract]   [Full Text] [Related]  

  • 72. Effect of monocrotophos and quinalphos on soil population and nitrogen-fixing activity of Azospirillum sp.
    Rangaswamy V; Charyulu PB; Venkateswarlu K
    Biomed Environ Sci; 1989 Dec; 2(4):305-11. PubMed ID: 2513838
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microbial biogeochemistry of uranium mill tailings.
    Landa ER
    Adv Appl Microbiol; 2005; 57():113-30. PubMed ID: 16002011
    [No Abstract]   [Full Text] [Related]  

  • 74. On the nature of mixed cultures of Chlorella pyrenoidosa TX 71105 and various bacteria.
    Vela GR; Guerra CN
    J Gen Microbiol; 1966 Jan; 42(1):123-31. PubMed ID: 5922292
    [No Abstract]   [Full Text] [Related]  

  • 75. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.
    Anderson OR; Lee JM; McGuire K
    J Eukaryot Microbiol; 2016 May; 63(3):363-6. PubMed ID: 26662659
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Soil microbial degradation of aldrin.
    Tu CM; Miles JR; Harris CR
    Life Sci; 1968 Mar; 7(6):311-22. PubMed ID: 5646384
    [No Abstract]   [Full Text] [Related]  

  • 77. A correlation between the dissipation of insecticides and rhizosphere microflora of Abelmoschus esculentus (L.) Moench.
    Kandasamy D; Marimuthu T; Oblisami G; Rajukkannu K; Raghuraj R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(4):340-4. PubMed ID: 910573
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Accumulation, metabolism, and effects of organophosphorus insecticides on microorganisms.
    Lal R
    Adv Appl Microbiol; 1982; 28():149-200. PubMed ID: 6765017
    [No Abstract]   [Full Text] [Related]  

  • 79. Nicotine-degrading microorganisms and their potential applications.
    Liu J; Ma G; Chen T; Hou Y; Yang S; Zhang KQ; Yang J
    Appl Microbiol Biotechnol; 2015 May; 99(9):3775-85. PubMed ID: 25805341
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhanced microbial degradation of carbofuran in soils with histories of Furadan use.
    Felsot A; Maddox JV; Bruce W
    Bull Environ Contam Toxicol; 1981 Jun; 26(6):781-8. PubMed ID: 7260449
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.