These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7905765)

  • 1. Calcium-dependent modulation of the facilitation of transmitter release at neuromuscular junctions of Drosophila.
    Mallart A
    J Physiol Paris; 1993; 87(2):83-8. PubMed ID: 7905765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication of frequenin in the facilitation of transmitter release in Drosophila.
    Rivosecchi R; Pongs O; Theil T; Mallart A
    J Physiol; 1994 Jan; 474(2):223-32. PubMed ID: 7911829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions.
    Zucker RS; Lara-Estrella LO
    J Gen Physiol; 1983 Mar; 81(3):355-72. PubMed ID: 6132958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that cysteine string proteins regulate an early step in the Ca2+-dependent secretion of neurotransmitter at Drosophila neuromuscular junctions.
    Umbach JA; Gundersen CB
    J Neurosci; 1997 Oct; 17(19):7203-9. PubMed ID: 9295366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S; Brodwick MS; Bittner GD
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of calcium and magnesium on statistical release parameters at the crayfish neuromuscular junction.
    Wernig A
    J Physiol; 1972 Nov; 226(3):761-8. PubMed ID: 4404687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evoked transmitter release at neuromuscular junctions in wild type and cysteine string protein null mutant larvae of Drosophila.
    Heckmann M; Adelsberger H; Dudel J
    Neurosci Lett; 1997 Jun; 228(3):167-70. PubMed ID: 9218634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two independent pathways mediated by cAMP and protein kinase A enhance spontaneous transmitter release at Drosophila neuromuscular junctions.
    Yoshihara M; Suzuki K; Kidokoro Y
    J Neurosci; 2000 Nov; 20(22):8315-22. PubMed ID: 11069938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paired-pulse facilitation of transmitter release at different levels of extracellular calcium concentration.
    Mukhamedyarov MA; Zefirov AL; Palotás A
    Neurochem Res; 2006 Aug; 31(8):1055-8. PubMed ID: 16871441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene dosage-dependent transmitter release changes at neuromuscular synapses of CACNA1A R192Q knockin mice are non-progressive and do not lead to morphological changes or muscle weakness.
    Kaja S; van de Ven RC; Broos LA; Veldman H; van Dijk JG; Verschuuren JJ; Frants RR; Ferrari MD; van den Maagdenberg AM; Plomp JJ
    Neuroscience; 2005; 135(1):81-95. PubMed ID: 16111830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in statistical parameters during facilitation at the crayfish neuromuscular junction.
    Wernig A
    J Physiol; 1972 Nov; 226(3):751-9. PubMed ID: 4404686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of intracellular calcium and its possible relationship to phasic transmitter release and facilitation at the frog neuromuscular junction.
    Stockbridge N; Moore JW
    J Neurosci; 1984 Mar; 4(3):803-11. PubMed ID: 6142934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmitter release triggered by a local depolarization in motor nerve terminals of the frog: role of calcium entry and of depolarization.
    Dudel J
    Neurosci Lett; 1983 Oct; 41(1-2):133-8. PubMed ID: 6139775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction.
    Delaney K; Tank DW; Zucker RS
    J Neurosci; 1991 Sep; 11(9):2631-43. PubMed ID: 1679119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
    Qian SM; Delaney KR
    Brain Res; 1997 Oct; 771(2):259-70. PubMed ID: 9401746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions.
    Rosato-Siri MD; Piriz J; Tropper BA; Uchitel OD
    Eur J Neurosci; 2002 Jun; 15(12):1874-80. PubMed ID: 12099893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses.
    Millar AG; Zucker RS; Ellis-Davies GC; Charlton MP; Atwood HL
    J Neurosci; 2005 Mar; 25(12):3113-25. PubMed ID: 15788768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmitter mobilization at the frog neuromuscular junction.
    Alkadhi K; Volle RL
    Arch Int Pharmacodyn Ther; 1977 Oct; 229(2):261-75. PubMed ID: 23083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing the twin-pulse facilitation of the release of transmitter at the mouse neuromuscular junction.
    Nishimura M; Shimizu Y; Satoh E; Yokoyama T; Yagasaki O
    Gen Pharmacol; 1993 Sep; 24(5):1241-7. PubMed ID: 7903652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.