BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7906229)

  • 1. Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES.
    Peralta D; Hartman DJ; Hoogenraad NJ; Høj PB
    FEBS Lett; 1994 Feb; 339(1-2):45-9. PubMed ID: 7906229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli chaperonins cpn60 (groEL) and cpn10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase.
    Miller AD; Maghlaoui K; Albanese G; Kleinjan DA; Smith C
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):139-44. PubMed ID: 8097086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro.
    Hartman DJ; Surin BP; Dixon NE; Hoogenraad NJ; Høj PB
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2276-80. PubMed ID: 8096339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refolding and recognition of mitochondrial malate dehydrogenase by Escherichia coli chaperonins cpn 60 (groEL) and cpn10 (groES).
    Hutchinson JP; el-Thaher TS; Miller AD
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):405-10. PubMed ID: 7916564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimal and optimal mechanisms for GroE-mediated protein folding.
    Ben-Zvi AP; Chatellier J; Fersht AR; Goloubinoff P
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15275-80. PubMed ID: 9860959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli beta-galactosidase.
    Ayling A; Baneyx F
    Protein Sci; 1996 Mar; 5(3):478-87. PubMed ID: 8868484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assay of malate dehydrogenase. A substrate for the E. coli chaperonins GroEL and GroES.
    Hayer-Hartl M
    Methods Mol Biol; 2000; 140():127-32. PubMed ID: 11484479
    [No Abstract]   [Full Text] [Related]  

  • 8. Chaperonin GroE and ADP facilitate the folding of various proteins and protect against heat inactivation.
    Kawata Y; Nosaka K; Hongo K; Mizobata T; Nagai J
    FEBS Lett; 1994 May; 345(2-3):229-32. PubMed ID: 7911090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of chaperonin 60 and chaperonin 10 from the anaerobic thermophile Thermoanaerobacter brockii.
    Truscott KN; Høj PB; Scopes RK
    Eur J Biochem; 1994 Jun; 222(2):277-84. PubMed ID: 7912671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese.
    Mendoza JA; Rogers E; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Jul; 266(20):13044-9. PubMed ID: 1677004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased efficiency of GroE-assisted protein folding by manganese ions.
    Diamant S; Azem A; Weiss C; Goloubinoff P
    J Biol Chem; 1995 Nov; 270(47):28387-91. PubMed ID: 7499341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant glyoxysomal but not mitochondrial malate dehydrogenase can fold without chaperone assistance.
    Gietl C; Seidel C; Svendsen I
    Biochim Biophys Acta; 1996 May; 1274(1-2):48-58. PubMed ID: 8645694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer.
    Azem A; Diamant S; Kessel M; Weiss C; Goloubinoff P
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12021-5. PubMed ID: 8618836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment.
    Tieman BC; Johnston MF; Fisher MT
    J Biol Chem; 2001 Nov; 276(48):44541-50. PubMed ID: 11551947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy.
    Chen S; Roseman AM; Hunter AS; Wood SP; Burston SG; Ranson NA; Clarke AR; Saibil HR
    Nature; 1994 Sep; 371(6494):261-4. PubMed ID: 7915827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity.
    Potnis AA; Rajaram H; Apte SK
    J Biochem; 2016 Mar; 159(3):295-304. PubMed ID: 26449235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction.
    Ranson NA; Burston SG; Clarke AR
    J Mol Biol; 1997 Mar; 266(4):656-64. PubMed ID: 9102459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro reconstitution of the 24-meric E2 inner core of bovine mitochondrial branched-chain alpha-keto acid dehydrogenase complex: requirement for chaperonins GroEL and GroES.
    Wynn RM; Davie JR; Zhi W; Cox RP; Chuang DT
    Biochemistry; 1994 Aug; 33(30):8962-8. PubMed ID: 7913832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding.
    Hayer-Hartl MK; Ewalt KL; Hartl FU
    Biol Chem; 1999 May; 380(5):531-40. PubMed ID: 10384959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP.
    Mizobata T; Akiyama Y; Ito K; Yumoto N; Kawata Y
    J Biol Chem; 1992 Sep; 267(25):17773-9. PubMed ID: 1355477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.