These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7906502)

  • 1. Neuroleptic medications inhibit complex I of the electron transport chain.
    Jackson-Lewis V; Przedborski S
    Ann Neurol; 1994 Feb; 35(2):244-5. PubMed ID: 7906502
    [No Abstract]   [Full Text] [Related]  

  • 2. Neuroleptic medications inhibit complex I of the electron transport chain.
    Burkhardt C; Kelly JP; Lim YH; Filley CM; Parker WD
    Ann Neurol; 1993 May; 33(5):512-7. PubMed ID: 8098932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation.
    Balijepalli S; Boyd MR; Ravindranath V
    Neuropharmacology; 1999 Apr; 38(4):567-77. PubMed ID: 10221760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New inhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides.
    Hollingworth RM; Ahammadsahib KI; Gadelhak G; McLaughlin JL
    Biochem Soc Trans; 1994 Feb; 22(1):230-3. PubMed ID: 8206238
    [No Abstract]   [Full Text] [Related]  

  • 5. Preclinical studies with compound GYKI-22441, a new long-acting neuroleptic phenothiazine.
    Király I; Borsy J; Tapfer M; Losonczy S; Rásky K; Toldy L; Tóth I
    Acta Physiol Hung; 1990; 75 Suppl():171-2. PubMed ID: 1973563
    [No Abstract]   [Full Text] [Related]  

  • 6. Paradoxical effect of neuroleptic drugs on prolactin secretion by rat pituitary cell cultures.
    Braghiroli L; Ponzianelli A; Mazzanti G
    Life Sci; 1999; 65(14):1455-61. PubMed ID: 10530797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex I and movement disorders.
    Iwasaki Y; Kinoshita M; Ikeda K; Mitsumoto H
    Neurology; 1992 Jun; 42(6):1254-5. PubMed ID: 1603360
    [No Abstract]   [Full Text] [Related]  

  • 8. Behavioral consequences of long-term treatment with neuroleptic drugs.
    Iversen SD; Howells RB; Hughes RP
    Adv Biochem Psychopharmacol; 1980; 24():305-13. PubMed ID: 6105782
    [No Abstract]   [Full Text] [Related]  

  • 9. Chronic treatment with a classical neuroleptic alters excitatory amino acid and GABAergic neurotransmission in specific regions of the rat brain.
    Johnson AE; Liminga U; Lidén A; Lindefors N; Gunne LM; Wiesel FA
    Neuroscience; 1994 Dec; 63(4):1003-20. PubMed ID: 7535390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased incidence and severity of neuroleptic-induced movement disorder in pinealectomized rats.
    Sandyk R; Fisher H
    Int J Neurosci; 1989 Oct; 48(3-4):303-8. PubMed ID: 2573582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels.
    Zhou X; Dong XW; Priestley T
    Brain Res; 2006 Aug; 1106(1):72-81. PubMed ID: 16839522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Duration-dependent increase in striatal glutamate following prolonged fluphenazine administration in rats.
    See RE; Lynch AM
    Eur J Pharmacol; 1996 Jul; 308(3):279-82. PubMed ID: 8858299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroleptic-induced oral movements in rats: methodological issues.
    Levy AD; See RE; Levin ED; Ellison GD
    Life Sci; 1987 Sep; 41(12):1499-506. PubMed ID: 2887997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitors of quinone mediated electron transport.
    Wiggins TE
    Biochem Soc Trans; 1992 Aug; 20(3):237S. PubMed ID: 1426535
    [No Abstract]   [Full Text] [Related]  

  • 15. Structure and mechanism of NAD[P]H:quinone acceptor oxidoreductases (NQO).
    Bianchet MA; Faig M; Amzel LM
    Methods Enzymol; 2004; 382():144-74. PubMed ID: 15047101
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrophysiologic interactions of antipsychotic drugs with central noradrenergic pathways.
    Marwaha J; Hoffer BJ; Geller HM; Freedman R
    Psychopharmacology (Berl); 1981; 73(2):126-33. PubMed ID: 6112771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarities between mitochondrial and bacterial electron transport with particular reference to the action of inhibitors.
    Ferguson SJ
    Biochem Soc Trans; 1994 Feb; 22(1):181-3. PubMed ID: 8206221
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of neuroleptic drugs on brain beta-endorphin immunoreactivity.
    Beal MF; Fisher J; Carr DB; Martin JB
    Neurosci Lett; 1985 Jan; 53(2):173-8. PubMed ID: 2858834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic neuroleptic administration decreases extracellular GABA in the nucleus accumbens but not in the caudate-putamen of rats.
    See RE; Chapman MA; Klitenick MA
    Brain Res; 1992 Aug; 588(1):177-80. PubMed ID: 1356587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of phenothiazine neuroleptic drugs and tricyclic antidepressants on phosphodiesterase activity in rat cerebral cortex.
    Janiec W; Kroczak-Dziuba K; Herman ZS
    Psychopharmacologia; 1974; 37(4):351-8. PubMed ID: 4152850
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.