BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7906544)

  • 1. Replacement of catalytic histidine-195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1994 Feb; 33(7):1944-50. PubMed ID: 7906544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pKa of the catalytic histidine residue of chloramphenicol acetyltransferase.
    Lewendon A; Shaw WV
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):15-9. PubMed ID: 8439283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG
    Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of the imidazole ring of His-195 at the active site of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Shaw WV
    J Biol Chem; 1991 Jun; 266(18):11695-8. PubMed ID: 2050670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate.
    Lewendon A; Murray IA; Kleanthous C; Cullis PM; Shaw WV
    Biochemistry; 1988 Sep; 27(19):7385-90. PubMed ID: 3061455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1990 Feb; 29(8):2075-80. PubMed ID: 2109633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of hydrogen bonding in enzyme-substrate complexes of chloramphenicol acetyltransferase by infrared spectroscopy and site-directed mutagenesis.
    Murray IA; Derrick JP; White AJ; Drabble K; Wharton CW; Shaw WV
    Biochemistry; 1994 Aug; 33(33):9826-30. PubMed ID: 8060990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism of chloramphenicol acetyltransferase: the role of ternary complex interconversion in rate determination.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1995 Dec; 34(51):16852-9. PubMed ID: 8527461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetyl coenzyme A binding by chloramphenicol acetyltransferase: long-range electrostatic determinants of coenzyme A recognition.
    Day PJ; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1992 May; 31(17):4198-205. PubMed ID: 1567867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site.
    Murray IA; Cann PA; Day PJ; Derrick JP; Sutcliffe MJ; Shaw WV; Leslie AG
    J Mol Biol; 1995 Dec; 254(5):993-1005. PubMed ID: 7500366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elimination of a reactive thiol group from the active site of chloramphenicol acetyltransferase.
    Lewendon A; Shaw WV
    Biochem J; 1990 Dec; 272(2):499-504. PubMed ID: 2268277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of hybrid active sites in oligomeric proteins: kinetic and ligand binding studies with chloramphenicol acetyltransferase trimers.
    Day PJ; Murray IA; Shaw WV
    Biochemistry; 1995 May; 34(19):6416-22. PubMed ID: 7756272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1991 Nov; 30(44):10806-13. PubMed ID: 1932000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic fluorescence of chloramphenicol acetyltransferase: responses to ligand binding and assignment of the contributions of tryptophan residues by site-directed mutagenesis.
    Ellis J; Murray IA; Shaw WV
    Biochemistry; 1991 Nov; 30(44):10799-805. PubMed ID: 1931999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition state stabilization by chloramphenicol acetyltransferase. Role of a water molecule bound to threonine 174.
    Lewendon A; Shaw WV
    J Biol Chem; 1993 Oct; 268(28):20997-1001. PubMed ID: 8407936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-function study of a proton transport pathway in the gamma-class carbonic anhydrase from Methanosarcina thermophila.
    Tripp BC; Ferry JG
    Biochemistry; 2000 Aug; 39(31):9232-40. PubMed ID: 10924116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the binding of 1,3-diacetylchloramphenicol to chloramphenicol acetyltransferase by isotope-edited 1H NMR and site-directed mutagenesis.
    Derrick JP; Lian LY; Roberts GC; Shaw WV
    Biochemistry; 1992 Sep; 31(35):8191-5. PubMed ID: 1525158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H; Liu L; Hanna PE; Wagner CR
    Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand interaction energies and molecular recognition by chloramphenicol acetyltransferase.
    Cullis PM; Lewendon A; Shaw WV; Williams JA
    Biochemistry; 1991 Apr; 30(15):3758-62. PubMed ID: 1849737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.