These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 7907022)
61. Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. Burgard EC; Hablitz JJ J Neurophysiol; 1993 Jan; 69(1):230-40. PubMed ID: 8094431 [TBL] [Abstract][Full Text] [Related]
62. Excitatory amino acid receptor-mediated neurotransmission from cutaneous afferents in rat dorsal horn in vitro. King AE; Lopez-Garcia JA J Physiol; 1993 Dec; 472():443-57. PubMed ID: 7908326 [TBL] [Abstract][Full Text] [Related]
63. Noradrenaline receptors participate in the regulation of GABAergic inhibition in area CA1 of the rat hippocampus. Andreasen M; Lambert JD J Physiol; 1991 Aug; 439():649-69. PubMed ID: 1680188 [TBL] [Abstract][Full Text] [Related]
64. CNQX, a new non-NMDA receptor antagonist, reduces spike wave discharges in the WAG/Rij rat model of absence epilepsy. Ramakers GM; Peeters BW; Vossen JM; Coenen AM Epilepsy Res; 1991 Jul; 9(2):127-31. PubMed ID: 1686585 [TBL] [Abstract][Full Text] [Related]
65. Involvement of opioid receptors in N-methyl-D-aspartate-induced arterial hypertension in periaqueductal gray matter. Maione S; Leyva J; Pallotta M; Berrino L; De Novellis V; Rossi F Naunyn Schmiedebergs Arch Pharmacol; 1995 Jan; 351(1):87-92. PubMed ID: 7715745 [TBL] [Abstract][Full Text] [Related]
66. Detailed behavioral analysis of water maze acquisition under APV or CNQX: contribution of sensorimotor disturbances to drug-induced acquisition deficits. Cain DP; Saucier D; Hall J; Hargreaves EL; Boon F Behav Neurosci; 1996 Feb; 110(1):86-102. PubMed ID: 8652076 [TBL] [Abstract][Full Text] [Related]
67. A role of periaqueductal grey NMDA receptors in mediating formalin-induced pain in the rat. Vaccarino AL; Clemmons HR; Mader GJ; Magnusson JE Neurosci Lett; 1997 Oct; 236(2):117-9. PubMed ID: 9404825 [TBL] [Abstract][Full Text] [Related]
68. Intrathecal neuromedin C enhances mechanical nociception: possible involvement of NMDA receptors. Onogi T; Kagawa M; Minami M; Kuraishi Y; Satoh M Eur J Pharmacol; 1994 Sep; 262(1-2):163-6. PubMed ID: 7813568 [TBL] [Abstract][Full Text] [Related]
69. Motor activity induced by disinhibition of the primary motor cortex of the rat is blocked by a non-NMDA glutamate receptor antagonist. Castro-Alamancos MA; Borrell J Neurosci Lett; 1993 Feb; 150(2):183-6. PubMed ID: 8097030 [TBL] [Abstract][Full Text] [Related]
70. Effects of the polyamine spermidine on NMDA-induced arterial hypertension in freely moving rats. Maione S; Berrino L; Pizzirusso A; Leyva J; Filippelli A; Vitagliano S; Rossi F Neuropharmacology; 1994 Jun; 33(6):789-93. PubMed ID: 7936116 [TBL] [Abstract][Full Text] [Related]
71. Involvement of the N-methyl-D-aspartate receptors of the vestibular nucleus in the gaze-holding system of the cat. Mettens P; Cheron G; Godaux E Neurosci Lett; 1994 Jun; 174(2):209-12. PubMed ID: 7970181 [TBL] [Abstract][Full Text] [Related]
72. Metabolic and neuroanatomical correlates of barrel-rolling and oculoclonic convulsions induced by intraventricular endothelin-1: a novel peptidergic signaling mechanism in visuovestibular and oculomotor regulation? Gross PM; Beninger RJ; Shaver SW; Wainman DS; Espinosa FJ; Weaver DF Exp Brain Res; 1993; 95(3):397-408. PubMed ID: 8224065 [TBL] [Abstract][Full Text] [Related]
73. Effects of diethylenetriamine on NMDA-induced increase of blood pressure in rats. Maione S; Pallotta M; Leyva J; Palazzo E; Rossi F Pharmacol Biochem Behav; 1998 Jan; 59(1):233-7. PubMed ID: 9443560 [TBL] [Abstract][Full Text] [Related]
74. Behavioural effects induced by microinjection of L-BOAA into the ventrolateral PAG matter of the mouse. Maione S; Berrino L; Leyva J; De Novellis V; Pallotta M; Rossi F Pharmacol Biochem Behav; 1995 Mar; 50(3):453-5. PubMed ID: 7617685 [TBL] [Abstract][Full Text] [Related]
75. Basal forebrain and cerebral cortical muscarinic receptors mediate increase in cortical blood flow provoked by periaqueductal gray matter. Nakai M; Ogata J; Fukui K; Nakai Y; Maeda M Neuroscience; 1997 Jul; 79(2):571-9. PubMed ID: 9200740 [TBL] [Abstract][Full Text] [Related]
76. A new experimental model of epilepsy based on the intraventricular injection of endothelin. Gross PM; Weaver DF J Cardiovasc Pharmacol; 1993; 22 Suppl 8():S282-7. PubMed ID: 7509966 [TBL] [Abstract][Full Text] [Related]
77. The antiepileptic effect of low-dose amino-phosphono-valeric acid (APV) is not enhanced by phosphatidylserine association. Loeb C; Patrone A; Besio G; Balestrino M; Mainardi P Seizure; 1993 Dec; 2(4):309-10. PubMed ID: 7909269 [TBL] [Abstract][Full Text] [Related]
78. Involvement of periaqueductal gray area NMDA receptors in endothelin-induced behavioural effects. Maione S; D'Amico M; Berrino L; Filippelli A; Leyva J; Rossi F Eur J Pharmacol; 1993 Nov; 250(1):209-12. PubMed ID: 7907022 [TBL] [Abstract][Full Text] [Related]
79. Endothelin-1 in rat periaqueductal gray area induces hypertension via glutamatergic receptors. D'Amico M; Berrino L; Maione S; Filippelli A; Pizzirusso A; Vitagliano S; Rossi F Hypertension; 1995 Apr; 25(4 Pt 1):507-10. PubMed ID: 7721391 [TBL] [Abstract][Full Text] [Related]
80. Endothelin-1 in periaqueductal gray area of mice induces analgesia via glutamatergic receptors. D'Amico M; Berrino L; Maione S; Filippelli A; de Novellis V; Rossi F Pain; 1996; 65(2-3):205-9. PubMed ID: 8826508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]