These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 7907228)

  • 21. Kinetics of Melanin Polymerization during Enzymatic and Nonenzymatic Oxidation.
    Mondal S; Thampi A; Puranik M
    J Phys Chem B; 2018 Feb; 122(7):2047-2063. PubMed ID: 29364665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melanins from tetrahydroisoquinolines: spectroscopic characteristics, scavenging activity and redox transfer properties.
    Mosca L; Blarzino C; Coccia R; Foppoli C; Rosei MA
    Free Radic Biol Med; 1998 Jan; 24(1):161-7. PubMed ID: 9436626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of melanin-tyrosinase complex and its possible significance as a model for control of melanin synthesis.
    Menon IA; Haberman HF
    Acta Derm Venereol; 1978; 58(1):9-11. PubMed ID: 75646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pronounced formation of 5-OH-dopa at enzymatic oxidation of DOPA in the presence of ascorbic acid.
    Hansson C; Rorsman H; Rosengren E
    Acta Derm Venereol; 1981; 61(2):147-8. PubMed ID: 6165191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of extracutaneous melanin pigment in Sparus auratus, Mugil cephalus, and Dicertranchus labrax (Pisces, Teleostei).
    Zuasti A; Ferrer C; Aroca P; Solano F
    Pigment Cell Res; 1990 Sep; 3(3):126-31. PubMed ID: 2127096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation.
    Hearing VJ; Ekel TM
    Biochem J; 1976 Sep; 157(3):549-57. PubMed ID: 825109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic Characterization of Natural Melanin from a
    Al Khatib M; Harir M; Costa J; Baratto MC; Schiavo I; Trabalzini L; Pollini S; Rossolini GM; Basosi R; Pogni R
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30071605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pheomelanogenesis is promoted at a weakly acidic pH.
    Wakamatsu K; Nagao A; Watanabe M; Nakao K; Ito S
    Pigment Cell Melanoma Res; 2017 May; 30(3):372-377. PubMed ID: 28271633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of selective incorporation of the melanoma seeker 2-thiouracil into growing melanin.
    Napolitano A; Palumbo A; d'Ischia M; Prota G
    J Med Chem; 1996 Dec; 39(26):5192-201. PubMed ID: 8978847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [UV-Vis spectroscopic study of aluminum-manganese cooperative effect on the melanin formation from DOPA oxidation].
    Di Jun-Wei ; Bi SP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jan; 25(1):83-5. PubMed ID: 15852826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of estradiol-2,3-quinone and its intermediary role in melanin formation.
    Jacobsohn MK; Byler DM; Jacobsohn GM
    Biochim Biophys Acta; 1991 Jan; 1073(1):1-10. PubMed ID: 1899339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of 2-hydroxyestradiol and its incorporation into melanin by mushroom tyrosinase.
    Jacobsohn MK; Dobre VC; Branam C; Jacobsohn GM
    J Steroid Biochem; 1988 Oct; 31(4A):377-85. PubMed ID: 3139939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical characterization of pheomelanogenesis starting from dihydroxyphenylalanine or tyrosine and cysteine. Effects of tyrosinase and cysteine concentrations and reaction time.
    Ozeki H; Ito S; Wakamatsu K; Ishiguro I
    Biochim Biophys Acta; 1997 Oct; 1336(3):539-48. PubMed ID: 9367182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mammalin tyrosinase. Stoichiometry and measurement of reaction products.
    Hearing VJ; Ekel TM; Montague PM; Nicholson JM
    Biochim Biophys Acta; 1980 Feb; 611(2):251-68. PubMed ID: 6766744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic studies of chemically modified synthetic melanins.
    Wilczok T; BiliƄska B; Buszman E; Kopera M
    Arch Biochem Biophys; 1984 Jun; 231(2):257-62. PubMed ID: 6329095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A possible metabolic role for o-diphenoloxidase in Mycobacterium leprae.
    Prabhakaran K; Harris EB
    Experientia; 1985 Dec; 41(12):1571-2. PubMed ID: 3935479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of NAD(P)H:quinone oxidoreductase on tyrosinase-mediated oxidation of opioid neuropeptides Leu-enkephalin and Met-enkephalin.
    Rescigno A; Porcu MC; Olianas A; Rinaldi AC; Sanjust E; Cocco D; Rinaldi A
    Biochem Mol Biol Int; 1995 Oct; 37(2):319-27. PubMed ID: 8673015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of low-molecular-weight opioid peptides by vascular plasma membrane aminopeptidase M.
    Bausback HH; Ward PE
    Biochim Biophys Acta; 1986 Jul; 882(3):437-44. PubMed ID: 2873842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation of 3,4-dihydroxyphenylalanine by connective tissue constituents. Identification of Mycobacterium leprae not related to phenolase activity.
    Kato L; Ishaque M; Adapoe C
    Int J Lepr Other Mycobact Dis; 1976; 44(4):435-42. PubMed ID: 828625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of L-DOPA on melanization and mycelial production in Malassezia furfur.
    Youngchim S; Nosanchuk JD; Pornsuwan S; Kajiwara S; Vanittanakom N
    PLoS One; 2013; 8(6):e63764. PubMed ID: 23762233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.