BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7907331)

  • 1. Reconstitution of drug-stimulated ATPase activity following co-expression of each half of human P-glycoprotein as separate polypeptides.
    Loo TW; Clarke DM
    J Biol Chem; 1994 Mar; 269(10):7750-5. PubMed ID: 7907331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase.
    Sarkadi B; Price EM; Boucher RC; Germann UA; Scarborough GA
    J Biol Chem; 1992 Mar; 267(7):4854-8. PubMed ID: 1347044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of bioactive hydrophobic peptides with the human multidrug transporter.
    Sarkadi B; Müller M; Homolya L; Holló Z; Seprödi J; Germann UA; Gottesman MM; Price EM; Boucher RC
    FASEB J; 1994 Jul; 8(10):766-70. PubMed ID: 7914178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional consequences of proline mutations in the predicted transmembrane domain of P-glycoprotein.
    Loo TW; Clarke DM
    J Biol Chem; 1993 Feb; 268(5):3143-9. PubMed ID: 8094081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of P-glycoprotein by protein kinase C alpha in a baculovirus expression system.
    Ahmad S; Safa AR; Glazer RI
    Biochemistry; 1994 Aug; 33(34):10313-8. PubMed ID: 7915139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities.
    Loo TW; Clarke DM
    J Biol Chem; 1995 Sep; 270(37):21449-52. PubMed ID: 7665554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations to amino acids located in predicted transmembrane segment 6 (TM6) modulate the activity and substrate specificity of human P-glycoprotein.
    Loo TW; Clarke DM
    Biochemistry; 1994 Nov; 33(47):14049-57. PubMed ID: 7947814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of the multidrug transporter.
    Germann UA
    Cytotechnology; 1993; 12(1-3):33-62. PubMed ID: 7765331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glycosylation and orientation in the membrane of the third cytoplasmic loop of human P-glycoprotein is affected by mutations and substrates.
    Loo TW; Clarke DM
    Biochemistry; 1999 Apr; 38(16):5124-9. PubMed ID: 10213617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiestrogens and steroid hormones: substrates of the human P-glycoprotein.
    Rao US; Fine RL; Scarborough GA
    Biochem Pharmacol; 1994 Jul; 48(2):287-92. PubMed ID: 7914405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein.
    Loo TW; Clarke DM
    J Biol Chem; 1994 Mar; 269(10):7243-8. PubMed ID: 7907326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural flexibility of the linker region of human P-glycoprotein permits ATP hydrolysis and drug transport.
    Hrycyna CA; Airan LE; Germann UA; Ambudkar SV; Pastan I; Gottesman MM
    Biochemistry; 1998 Sep; 37(39):13660-73. PubMed ID: 9753453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis.
    Ambudkar SV; Lelong IH; Zhang J; Cardarelli CO; Gottesman MM; Pastan I
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8472-6. PubMed ID: 1356264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the human P-glycoprotein ATPase by trypsin.
    Nuti SL; Mehdi A; Rao US
    Biochemistry; 2000 Mar; 39(12):3424-32. PubMed ID: 10727237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, overexpression, purification, and characterization of the carboxyl-terminal nucleotide binding domain of P-glycoprotein.
    Sharma S; Rose DR
    J Biol Chem; 1995 Jun; 270(23):14085-93. PubMed ID: 7775470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates.
    Loo TW; Clarke DM
    J Biol Chem; 1996 Nov; 271(44):27482-7. PubMed ID: 8910331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P-glycoprotein. ATP hydrolysis by the N-terminal nucleotide-binding domain.
    Shimabuku AM; Nishimoto T; Ueda K; Komano T
    J Biol Chem; 1992 Mar; 267(7):4308-11. PubMed ID: 1347041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of transport activity by co-expression of human reduced folate carrier half-molecules in transport-impaired K562 cells: localization of a substrate binding domain to transmembrane domains 7-12.
    Witt TL; Stapels SE; Matherly LH
    J Biol Chem; 2004 Nov; 279(45):46755-63. PubMed ID: 15337749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein.
    Loo TW; Clarke DM
    J Biol Chem; 1993 Sep; 268(27):19965-72. PubMed ID: 8104183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of action of human P-glycoprotein ATPase activity. Photochemical cleavage during a catalytic transition state using orthovanadate reveals cross-talk between the two ATP sites.
    Hrycyna CA; Ramachandra M; Ambudkar SV; Ko YH; Pedersen PL; Pastan I; Gottesman MM
    J Biol Chem; 1998 Jul; 273(27):16631-4. PubMed ID: 9642211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.