These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 7907586)
1. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. De Gioia L; Selvaggini C; Ghibaudi E; Diomede L; Bugiani O; Forloni G; Tagliavini F; Salmona M J Biol Chem; 1994 Mar; 269(11):7859-62. PubMed ID: 7907586 [TBL] [Abstract][Full Text] [Related]
2. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein. Satheeshkumar KS; Jayakumar R Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502 [TBL] [Abstract][Full Text] [Related]
3. Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. Selvaggini C; De Gioia L; Cantù L; Ghibaudi E; Diomede L; Passerini F; Forloni G; Bugiani O; Tagliavini F; Salmona M Biochem Biophys Res Commun; 1993 Aug; 194(3):1380-6. PubMed ID: 8102526 [TBL] [Abstract][Full Text] [Related]
4. Clustered negative charges on the lipid membrane surface induce beta-sheet formation of prion protein fragment 106-126. Miura T; Yoda M; Takaku N; Hirose T; Takeuchi H Biochemistry; 2007 Oct; 46(41):11589-97. PubMed ID: 17887730 [TBL] [Abstract][Full Text] [Related]
5. Conformational transitions in peptides containing two putative alpha-helices of the prion protein. Zhang H; Kaneko K; Nguyen JT; Livshits TL; Baldwin MA; Cohen FE; James TL; Prusiner SB J Mol Biol; 1995 Jul; 250(4):514-26. PubMed ID: 7542350 [TBL] [Abstract][Full Text] [Related]
6. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity. Satheeshkumar KS; Murali J; Jayakumar R J Struct Biol; 2004 Nov; 148(2):176-93. PubMed ID: 15477098 [TBL] [Abstract][Full Text] [Related]
7. Prion protein fragments spanning helix 1 and both strands of beta sheet (residues 125-170) show evidence for predominantly helical propensity by CD and NMR. Sharman GJ; Kenward N; Williams HE; Landon M; Mayer RJ; Searle MS Fold Des; 1998; 3(5):313-20. PubMed ID: 9806936 [TBL] [Abstract][Full Text] [Related]
8. Peptides and proteins in neurodegenerative disease: helix propensity of a polypeptide containing helix 1 of the mouse prion protein studied by NMR and CD spectroscopy. Liu A; Riek R; Zahn R; Hornemann S; Glockshuber R; Wüthrich K Biopolymers; 1999; 51(2):145-52. PubMed ID: 10397798 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic characterization of conformational differences between PrPC and PrPSc: an alpha-helix to beta-sheet transition. Baldwin MA; Pan KM; Nguyen J; Huang Z; Groth D; Serban A; Gasset M; Mehlhorn I; Fletterick RJ; Cohen FE Philos Trans R Soc Lond B Biol Sci; 1994 Mar; 343(1306):435-41. PubMed ID: 7913763 [TBL] [Abstract][Full Text] [Related]
11. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments. Di Natale G; Pappalardo G; Milardi D; Sciacca MF; Attanasio F; La Mendola D; Rizzarelli E J Phys Chem B; 2010 Nov; 114(43):13830-8. PubMed ID: 20936829 [TBL] [Abstract][Full Text] [Related]
12. A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Hornemann S; Glockshuber R Proc Natl Acad Sci U S A; 1998 May; 95(11):6010-4. PubMed ID: 9600908 [TBL] [Abstract][Full Text] [Related]
13. The key-role of tyrosine 155 in the mechanism of prion transconformation as highlighted by a study of sheep mutant peptides. Bertho G; Bouvier G; Hoa GH; Girault JP Peptides; 2008 Jul; 29(7):1073-84. PubMed ID: 18455265 [TBL] [Abstract][Full Text] [Related]
14. Molecular properties of complexes formed between the prion protein and synthetic peptides. Kaneko K; Wille H; Mehlhorn I; Zhang H; Ball H; Cohen FE; Baldwin MA; Prusiner SB J Mol Biol; 1997 Jul; 270(4):574-86. PubMed ID: 9245588 [TBL] [Abstract][Full Text] [Related]
15. The role of prion peptide structure and aggregation in toxicity and membrane binding. Rymer DL; Good TA J Neurochem; 2000 Dec; 75(6):2536-45. PubMed ID: 11080207 [TBL] [Abstract][Full Text] [Related]
16. Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Kaneko K; Peretz D; Pan KM; Blochberger TC; Wille H; Gabizon R; Griffith OH; Cohen FE; Baldwin MA; Prusiner SB Proc Natl Acad Sci U S A; 1995 Nov; 92(24):11160-4. PubMed ID: 7479957 [TBL] [Abstract][Full Text] [Related]
17. Conformational dynamics of a hydrophobic prion fragment (113-127) in different pH and osmolyte solutions. Inayathullah M; Rajadas J Neuropeptides; 2016 Jun; 57():9-14. PubMed ID: 26919915 [TBL] [Abstract][Full Text] [Related]
18. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra. Barrow CJ; Yasuda A; Kenny PT; Zagorski MG J Mol Biol; 1992 Jun; 225(4):1075-93. PubMed ID: 1613791 [TBL] [Abstract][Full Text] [Related]
19. Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. Safar J; Roller PP; Gajdusek DC; Gibbs CJ J Biol Chem; 1993 Sep; 268(27):20276-84. PubMed ID: 8104185 [TBL] [Abstract][Full Text] [Related]
20. Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Swietnicki W; Morillas M; Chen SG; Gambetti P; Surewicz WK Biochemistry; 2000 Jan; 39(2):424-31. PubMed ID: 10631004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]