These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7907935)

  • 1. Evidence for NMDA receptor in the afferent synaptic transmission of the vestibular system.
    Soto E; Flores A; Eróstegui C; Vega R
    Brain Res; 1994 Jan; 633(1-2):289-96. PubMed ID: 7907935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA-mediated potentiation of the afferent synapse in the inner ear.
    Soto E; Flores A; Vega R
    Neuroreport; 1994 Oct; 5(15):1963-5. PubMed ID: 7841385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-related properties of vestibular afferent fibers in the frog: differential synaptic activation of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors.
    Straka H; Debler K; Dieringer N
    Neuroscience; 1996 Feb; 70(3):697-707. PubMed ID: 9045082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actions of excitatory amino acid acid agonists and antagonists on the primary afferents of the vestibular system of the axolotl (Ambystoma mexicanum).
    Soto E; Vega R
    Brain Res; 1988 Oct; 462(1):104-11. PubMed ID: 3052698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of spinal visceral nociceptive transmission by NMDA receptor activation in the rat.
    Kolhekar R; Gebhart GF
    J Neurophysiol; 1996 Jun; 75(6):2344-53. PubMed ID: 8793747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide in the afferent synaptic transmission of the axolotl vestibular system.
    Flores A; Soto E; Vega R
    Neuroscience; 2001; 103(2):457-64. PubMed ID: 11246160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence against the presence of NMDA receptors at a central glutamatergic synapse in leeches.
    Wu E
    Invert Neurosci; 2002 Apr; 4(3):157-64. PubMed ID: 12488975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation by glycine, Mg2+ and polyamines of the N-methyl-D-aspartate-induced locomotion in the neonatal rat spinal cord in vitro.
    Bertrand S; Cazalets JR
    Neuroscience; 1999; 94(4):1199-206. PubMed ID: 10625059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons.
    Jarvis CR; Xiong ZG; Plant JR; Churchill D; Lu WY; MacVicar BA; MacDonald JF
    J Neurophysiol; 1997 Nov; 78(5):2363-71. PubMed ID: 9356388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kainate and NMDA toxicity for cultured developing and adult rat spiral ganglion neurons: further evidence for a glutamatergic excitatory neurotransmission at the inner hair cell synapse.
    Lefebvre PP; Weber T; Leprince P; Rigo JM; Delrée P; Rogister B; Moonen G
    Brain Res; 1991 Jul; 555(1):75-83. PubMed ID: 1681996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol inhibits NMDA-stimulated neurite growth by sensory neurons in vitro.
    Dow KE; Riopelle RJ
    Neuroreport; 1990 Oct; 1(2):111-4. PubMed ID: 1983353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole cell and single channel analysis of the kinetics of glycine-sensitive N-methyl-D-aspartate receptor desensitization.
    Parsons CG; Zong X; Lux HD
    Br J Pharmacol; 1993 May; 109(1):213-21. PubMed ID: 8098640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Participation of excitatory amino acid receptors in the slow excitatory synaptic transmission in rat spinal dorsal horn.
    Gerber G; Cerne R; Randić M
    Brain Res; 1991 Oct; 561(2):236-51. PubMed ID: 1686986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors.
    Fink K; Schultheiss R; Göthert M
    Br J Pharmacol; 1992 May; 106(1):67-72. PubMed ID: 1380384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for glycine modulation of excitatory synaptic inputs to retinal ganglion cells.
    Lukasiewicz PD; Roeder RC
    J Neurosci; 1995 Jun; 15(6):4592-601. PubMed ID: 7790926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential roles for NMDA and non-NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat.
    Zhang J; Mifflin SW
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):733-45. PubMed ID: 9714856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from vestibular nerve afferent fibers in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1996 Nov; 76(5):3087-101. PubMed ID: 8930257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of excitatory amino acids in mediating burst discharge of red nucleus neurons in the in vitro turtle brain stem-cerebellum.
    Keifer J; Houk JC
    J Neurophysiol; 1991 Mar; 65(3):454-67. PubMed ID: 1675669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH modulates the vestibular afferent discharge and its response to excitatory amino acids.
    Vega R; Mercado F; Chávez H; Limón A; Almanza A; Ortega A; Pérez ME; Soto E
    Neuroreport; 2003 Jul; 14(10):1327-8. PubMed ID: 12876466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histamine (H3) receptors modulate the excitatory amino acid receptor response of the vestibular afferents.
    Chávez H; Vega R; Soto E
    Brain Res; 2005 Dec; 1064(1-2):1-9. PubMed ID: 16310756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.