These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 7908145)

  • 1. FGF-2: apical ectodermal ridge growth signal for chick limb development.
    Fallon JF; López A; Ros MA; Savage MP; Olwin BB; Simandl BK
    Science; 1994 Apr; 264(5155):104-7. PubMed ID: 7908145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of FGFs on the morphogenic potency and AER-maintenance activity of cultured progress zone cells of chick limb bud.
    Hara K; Kimura J; Ide H
    Int J Dev Biol; 1998 May; 42(4):591-9. PubMed ID: 9694630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression pattern of the chicken homeobox-containing gene GHox-7 in developing polydactylous limb buds suggests its involvement in apical ectodermal ridge-directed outgrowth of limb mesoderm and in programmed cell death.
    Coelho CN; Upholt WB; Kosher RA
    Differentiation; 1993 Jan; 52(2):129-37. PubMed ID: 8097171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of FGF on gene expression in chick limb bud cells in vivo and in vitro.
    Vogel A; Roberts-Clarke D; Niswander L
    Dev Biol; 1995 Oct; 171(2):507-20. PubMed ID: 7556932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IGF-I, insulin and FGFs induce outgrowth of the limb buds of amelic mutant chick embryos.
    Dealy CN; Kosher RA
    Development; 1996 Apr; 122(4):1323-30. PubMed ID: 8620859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions.
    Ros MA; López-Martínez A; Simandl BK; Rodriguez C; Izpisúa Belmonte JC; Dahn R; Fallon JF
    Development; 1996 Aug; 122(8):2319-30. PubMed ID: 8756277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effects of FGF and non-ridge ectoderm on gene expression involved in the formation of the anteroposterior axis of the chick limb bud in cell culture.
    Kimura J; Sato-Maeda M; Noji S; Ide H
    Dev Growth Differ; 2000 Jun; 42(3):219-27. PubMed ID: 10910128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGF-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro.
    Vogel A; Tickle C
    Development; 1993 Sep; 119(1):199-206. PubMed ID: 8275856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Msx1 expressing mesoderm is important for the apical ectodermal ridge (AER)-signal transfer in chick limb development.
    Hara K; Ide H
    Dev Growth Differ; 1997 Dec; 39(6):705-14. PubMed ID: 9493830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apical ridge dependent and independent mesodermal domains of GHox-7 and GHox-8 expression in chick limb buds.
    Ros MA; Lyons G; Kosher RA; Upholt WB; Coelho CN; Fallon JF
    Development; 1992 Nov; 116(3):811-8. PubMed ID: 1363230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibroblast growth factors induce additional limb development from the flank of chick embryos.
    Cohn MJ; Izpisúa-Belmonte JC; Abud H; Heath JK; Tickle C
    Cell; 1995 Mar; 80(5):739-46. PubMed ID: 7889567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of transforming growth factor-alpha and epidermal growth factor in chick limb development.
    Dealy CN; Scranton V; Cheng HC
    Dev Biol; 1998 Oct; 202(1):43-55. PubMed ID: 9758702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo inhibition of programmed cell death by local administration of FGF-2 and FGF-4 in the interdigital areas of the embryonic chick leg bud.
    Macias D; Gañan Y; Ros MA; Hurle JM
    Anat Embryol (Berl); 1996 Jun; 193(6):533-41. PubMed ID: 8737809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The apical ectodermal ridge regulates Hox-7 and Hox-8 gene expression in developing chick limb buds.
    Robert B; Lyons G; Simandl BK; Kuroiwa A; Buckingham M
    Genes Dev; 1991 Dec; 5(12B):2363-74. PubMed ID: 1684333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant limbs as a model to study homeobox gene regulation during limb development.
    Ros MA; Lyons GE; Mackem S; Fallon JF
    Dev Biol; 1994 Nov; 166(1):59-72. PubMed ID: 7958460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF-stimulated outgrowth and proliferation of limb mesoderm is dependent on syndecan-3.
    Dealy CN; Seghatoleslami MR; Ferrari D; Kosher RA
    Dev Biol; 1997 Apr; 184(2):343-50. PubMed ID: 9133440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectoderm-mesenchyme and mesenchyme-mesenchyme interactions regulate Msx-1 expression and cellular differentiation in the murine limb bud.
    Wang Y; Sassoon D
    Dev Biol; 1995 Apr; 168(2):374-82. PubMed ID: 7537232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development.
    Purushothaman S; Elewa A; Seifert AW
    Elife; 2019 Sep; 8():. PubMed ID: 31538936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2.
    Moftah MZ; Downie SA; Bronstein NB; Mezentseva N; Pu J; Maher PA; Newman SA
    Dev Biol; 2002 Sep; 249(2):270-82. PubMed ID: 12221006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct signaling molecules control Hoxa-11 and Hoxa-13 expression in the muscle precursor and mesenchyme of the chick limb bud.
    Hashimoto K; Yokouchi Y; Yamamoto M; Kuroiwa A
    Development; 1999 Jun; 126(12):2771-83. PubMed ID: 10331987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.