These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. Ruthazer ES; Cline HT J Neurobiol; 2004 Apr; 59(1):134-46. PubMed ID: 15007832 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms and molecules controlling the development of retinal maps. Roskies A; Friedman GC; O'Leary DD Perspect Dev Neurobiol; 1995; 3(1):63-75. PubMed ID: 8542257 [TBL] [Abstract][Full Text] [Related]
4. [Molecular mechanisms for the formation of topographic retinotectal projection]. Shintani T; Sakuta H; Noda M Brain Nerve; 2008 Apr; 60(4):425-35. PubMed ID: 18421984 [TBL] [Abstract][Full Text] [Related]
5. Roles of periventricular neurons in retinotectal transmission in the optic tectum. Kinoshita M; Ito E Prog Neurobiol; 2006 Jun; 79(2):112-21. PubMed ID: 16901616 [TBL] [Abstract][Full Text] [Related]
6. Development of the visual system of the chick--a review. Mey J; Thanos S J Hirnforsch; 1992; 33(6):673-702. PubMed ID: 1494045 [TBL] [Abstract][Full Text] [Related]
7. It's all in the assay: a new model for retinotectal topographic mapping. Godement P; Mason C Neuron; 2004 Jun; 42(5):697-9. PubMed ID: 15182709 [TBL] [Abstract][Full Text] [Related]
8. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. Schmidt JT; Buzzard M J Neurobiol; 1993 Mar; 24(3):384-99. PubMed ID: 7684064 [TBL] [Abstract][Full Text] [Related]
9. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant. Matsuda N; Mishina M Development; 2004 May; 131(9):1913-25. PubMed ID: 15056614 [TBL] [Abstract][Full Text] [Related]
10. Key roles of Ephs and ephrins in retinotectal topographic map formation. Scicolone G; Ortalli AL; Carri NG Brain Res Bull; 2009 Jun; 79(5):227-47. PubMed ID: 19480983 [TBL] [Abstract][Full Text] [Related]
14. Spatial and temporal patterns of apoptosis during differentiation of the retina in the turtle. Francisco-Morcillo J; Hidalgo-Sánchez M; Martín-Partido G Anat Embryol (Berl); 2004 Jul; 208(4):289-99. PubMed ID: 15168116 [TBL] [Abstract][Full Text] [Related]
15. Properties of a double gradient model for retinotectal specificity. Marchase RB; Roth S Prog Clin Biol Res; 1978; 23():637-45. PubMed ID: 662922 [TBL] [Abstract][Full Text] [Related]
16. Relative number of cells projecting from contralateral and ipsilateral nucleus isthmi to loci in the optic tectum is dependent on visuotopic location: horseradish peroxidase study in the leopard frog. Dudkin EA; Gruberg ER J Comp Neurol; 1999 Nov; 414(2):212-6. PubMed ID: 10516592 [TBL] [Abstract][Full Text] [Related]
17. Competitive and positional cues in the patterning of nerve connections. Fraser SE; Perkel DH J Neurobiol; 1990 Jan; 21(1):51-72. PubMed ID: 2181067 [TBL] [Abstract][Full Text] [Related]
18. Visual input induces long-term potentiation of developing retinotectal synapses. Zhang LI; Tao HW; Poo M Nat Neurosci; 2000 Jul; 3(7):708-15. PubMed ID: 10862704 [TBL] [Abstract][Full Text] [Related]
19. Position, guidance, and mapping in the developing visual system. Holt CE; Harris WA J Neurobiol; 1993 Oct; 24(10):1400-22. PubMed ID: 8228964 [TBL] [Abstract][Full Text] [Related]
20. Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. Monschau B; Kremoser C; Ohta K; Tanaka H; Kaneko T; Yamada T; Handwerker C; Hornberger MR; Löschinger J; Pasquale EB; Siever DA; Verderame MF; Müller BK; Bonhoeffer F; Drescher U EMBO J; 1997 Mar; 16(6):1258-67. PubMed ID: 9135142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]