BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2553 related articles for article (PubMed ID: 7908318)

  • 1. Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue.
    Rofstad EK; Steinsland E; Kaalhus O; Chang YB; Høvik B; Lyng H
    Int J Radiat Biol; 1994 Mar; 65(3):387-401. PubMed ID: 7908318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of necrosis in human tumour xenografts by proton magnetic resonance imaging.
    Jakobsen I; Kaalhus O; Lyng H; Rofstad EK
    Br J Cancer; 1995 Mar; 71(3):456-61. PubMed ID: 7880724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton relaxation times and interstitial fluid pressure in human melanoma xenografts.
    Lyng H; Tufto I; Skretting A; Rofstad EK
    Br J Cancer; 1997; 75(2):180-3. PubMed ID: 9010023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of proliferation activity in human melanoma xenografts by magnetic resonance imaging.
    Olsen G; Lyng H; Tufto I; Solberg K; Bjørnaes I; Rofstad EK
    Magn Reson Imaging; 1999 Apr; 17(3):393-402. PubMed ID: 10195582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumours.
    Rofstad EK; Måseide K
    Int J Radiat Biol; 1999 Nov; 75(11):1377-93. PubMed ID: 10597912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human malignant melanomas with varying degrees of melanin content in nude mice: MR imaging, histopathology, and electron paramagnetic resonance.
    Atlas SW; Braffman BH; LoBrutto R; Elder DE; Herlyn D
    J Comput Assist Tomogr; 1990; 14(4):547-54. PubMed ID: 2164537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth rates or radiobiological hypoxia are not correlated with local metabolite content in human melanoma xenografts with similar vascular network.
    Kroeger M; Walenta S; Rofstad EK; Mueller-Klieser W
    Br J Cancer; 1995 Oct; 72(4):912-6. PubMed ID: 7547239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI of human tumor xenografts in vivo: proton relaxation times and extracellular tumor volume.
    Jakobsen I; Lyng H; Kaalhus O; Rofstad EK
    Magn Reson Imaging; 1995; 13(5):693-700. PubMed ID: 8569443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P-nuclear magnetic resonance spectroscopy in vivo of four human melanoma xenograft lines: spin-lattice relaxation times.
    Olsen DR; Lyng H; Southon TE; Rofstad EK
    Radiother Oncol; 1994 Jul; 32(1):54-62. PubMed ID: 7938679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumour T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumour cells--a preclinical MR study in mice.
    Weidensteiner C; Allegrini PR; Sticker-Jantscheff M; Romanet V; Ferretti S; McSheehy PM
    BMC Cancer; 2014 Feb; 14():88. PubMed ID: 24528602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.
    Lyng H; Olsen DR; Southon TE; Rofstad EK
    Br J Cancer; 1993 Dec; 68(6):1061-70. PubMed ID: 8260356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters.
    Cameron IL; Ord VA; Fullerton GD
    Magn Reson Imaging; 1984; 2(2):97-106. PubMed ID: 6530924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracapillary HbO2 saturations in murine tumours and human tumour xenografts measured by cryospectrophotometry: relationship to tumour volume, tumour pH and fraction of radiobiologically hypoxic cells.
    Rofstad EK; Fenton BM; Sutherland RM
    Br J Cancer; 1988 May; 57(5):494-502. PubMed ID: 3395554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of MR imaging and histologic findings in mouse melanoma.
    DeJordy JO; Bendel P; Horowitz A; Salomon Y; Degani H
    J Magn Reson Imaging; 1992; 2(6):695-700. PubMed ID: 1446114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of tumor necrosis.
    Egeland TA; Gaustad JV; Galappathi K; Rofstad EK
    Acta Oncol; 2011 Apr; 50(3):427-34. PubMed ID: 20950229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of dexamethasone on tissue water distribution and proton relaxation in Panc02 tumors.
    Braunschweiger PG; Reynolds K; Nelson TR; Maring E
    Magn Reson Imaging; 1987; 5(6):483-92. PubMed ID: 3431359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumours of the central nervous system. Proton magnetic resonance relaxation times T1 and T2 and histopathologic correlates.
    Englund E; Brun A; Larsson EM; Györffy-Wagner Z; Persson B
    Acta Radiol Diagn (Stockh); 1986; 27(6):653-9. PubMed ID: 3028046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological implications of androgen dependent changes in proton-NMR relaxation times in rat ventral prostate.
    Braunschweiger PG; Glode LM; Maring EM; Machus K; Reynolds K
    Prostate; 1986; 9(3):283-94. PubMed ID: 3095803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1H-NMR analysis of nerve edema in the streptozotocin-induced diabetic rat.
    Suzuki E; Yasuda K; Yasuda K; Miyazaki S; Takeda N; Inouye H; Omawari N; Miura K
    J Lab Clin Med; 1994 Nov; 124(5):627-37. PubMed ID: 7964120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 128.