These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 7908417)

  • 1. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation.
    Zhuo M; Hu Y; Schultz C; Kandel ER; Hawkins RD
    Nature; 1994 Apr; 368(6472):635-9. PubMed ID: 7908417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long-term potentiation.
    Hawkins RD; Zhuo M; Arancio O
    J Neurobiol; 1994 Jun; 25(6):652-65. PubMed ID: 8071665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-dependent long-term enhancement of transmitter release by presynaptic 3',5'-cyclic GMP in cultured hippocampal neurons.
    Arancio O; Kandel ER; Hawkins RD
    Nature; 1995 Jul; 376(6535):74-80. PubMed ID: 7596438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole.
    Chien WL; Liang KC; Teng CM; Kuo SC; Lee FY; Fu WM
    Mol Pharmacol; 2003 Jun; 63(6):1322-8. PubMed ID: 12761342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus. Alterations in hyperammonemia.
    Monfort P; Muñoz MD; Kosenko E; Llansola M; Sánchez-Pérez A; Cauli O; Felipo V
    Neurochem Int; 2004 Nov; 45(6):895-901. PubMed ID: 15312984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase, and cGMP-degrading phosphodiesterase.
    Monfort P; Muñoz MD; Kosenko E; Felipo V
    J Neurosci; 2002 Dec; 22(23):10116-22. PubMed ID: 12451112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical role of NO/cGMP/PKG dependent pathway in hippocampal post-ischemic LTP: modulation by zonisamide.
    Costa C; Tozzi A; Siliquini S; Galletti F; Cardaioli G; Tantucci M; Pisani F; Calabresi P
    Neurobiol Dis; 2011 Nov; 44(2):185-91. PubMed ID: 21749921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The specific role of cGMP in hippocampal LTP.
    Son H; Lu YF; Zhuo M; Arancio O; Kandel ER; Hawkins RD
    Learn Mem; 1998; 5(3):231-45. PubMed ID: 10454367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different roles of two nitric oxide activated pathways in spinal long-term potentiation of C-fiber-evoked field potentials.
    Zhang XC; Zhang YQ; Zhao ZQ
    Neuropharmacology; 2006 May; 50(6):748-54. PubMed ID: 16427664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive induction of late-phase LTP produces long-lasting synaptic enhancement accompanied by synaptogenesis in cultured hippocampal slices.
    Tominaga-Yoshino K; Urakubo T; Okada M; Matsuda H; Ogura A
    Hippocampus; 2008; 18(3):281-93. PubMed ID: 18058822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and long-term potentiation.
    Hsu KS; Huang CC; Liang YC; Wu HM; Chen YL; Lo SW; Ho WC
    Hippocampus; 2002; 12(6):787-802. PubMed ID: 12542230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperammonemia impairs long-term potentiation in hippocampus by altering the modulation of cGMP-degrading phosphodiesterase by protein kinase G.
    Monfort P; Muñoz MD; Felipo V
    Neurobiol Dis; 2004 Feb; 15(1):1-10. PubMed ID: 14751765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic hyperammonemia in vivo impairs long-term potentiation in hippocampus by altering activation of cyclic GMP-dependent-protein kinase and of phosphodiesterase 5.
    Monfort P; Muñoz MD; Felipo V
    J Neurochem; 2005 Aug; 94(4):934-42. PubMed ID: 16092938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. eNOS, nNOS, cGMP and protein kinase G mediate the inhibitory effect of pancreastatin, a chromogranin A-derived peptide, on growth and proliferation of hepatoma cells.
    Díaz-Troya S; Najib S; Sánchez-Margalet V
    Regul Pept; 2005 Feb; 125(1-3):41-6. PubMed ID: 15582712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide increases the spontaneous firing rate of rat medial vestibular nucleus neurons in vitro via a cyclic GMP-mediated PKG-independent mechanism.
    Podda MV; Marcocci ME; Oggiano L; D'Ascenzo M; Tolu E; Palamara AT; Azzena GB; Grassi C
    Eur J Neurosci; 2004 Oct; 20(8):2124-32. PubMed ID: 15450091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cGMP/protein kinase G-dependent potentiation of glutamatergic transmission induced by nitric oxide in immature rat rostral ventrolateral medulla neurons in vitro.
    Huang CC; Chan SH; Hsu KS
    Mol Pharmacol; 2003 Aug; 64(2):521-32. PubMed ID: 12869658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide and cGMP can produce either synaptic depression or potentiation depending on the frequency of presynaptic stimulation in the hippocampus.
    Zhuo M; Kandel ER; Hawkins RD
    Neuroreport; 1994 May; 5(9):1033-6. PubMed ID: 8080953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus.
    Lanté F; de Jésus Ferreira MC; Guiramand J; Récasens M; Vignes M
    Hippocampus; 2006; 16(4):345-60. PubMed ID: 16302229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic GMP-dependent feedback inhibition of AMPA receptors is independent of PKG.
    Lei S; Jackson MF; Jia Z; Roder J; Bai D; Orser BA; MacDonald JF
    Nat Neurosci; 2000 Jun; 3(6):559-65. PubMed ID: 10816311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of active shuttle avoidance response by the NO-cGMP-PKG activator YC-1.
    Chien WL; Liang KC; Fu WM
    Eur J Pharmacol; 2008 Aug; 590(1-3):233-40. PubMed ID: 18590724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.