These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7908694)
1. Ultrastructural evidence of GABA-ergic inhibition and glutamatergic excitation in the pacemaker nucleus of the gymnotiform electric fish, Hypopomus. Kennedy G; Heiligenberg W J Comp Physiol A; 1994 Mar; 174(3):267-80. PubMed ID: 7908694 [TBL] [Abstract][Full Text] [Related]
2. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus. Keller CH; Kawasaki M; Heiligenberg W J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751 [TBL] [Abstract][Full Text] [Related]
3. Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish. Kawasaki M; Heiligenberg W J Neurosci; 1990 Dec; 10(12):3896-904. PubMed ID: 1980133 [TBL] [Abstract][Full Text] [Related]
4. Interruption of pacemaker signals is mediated by GABAergic inhibition of the pacemaker nucleus in the African electric fish Gymnarchus niloticus. Zhang Y; Kawasaki M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jun; 193(6):665-75. PubMed ID: 17406874 [TBL] [Abstract][Full Text] [Related]
5. Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. Kawasaki M; Maler L; Rose GJ; Heiligenberg W J Comp Neurol; 1988 Oct; 276(1):113-31. PubMed ID: 2461396 [TBL] [Abstract][Full Text] [Related]
6. HRP labeling and ultrastructural localization of prepacemaker terminals within the medullary pacemaker nucleus of the weakly electric gymnotiform fish Apteronotus leptorhynchus. Szabo T; Heiligenberg W; Ravaille-Veron M J Comp Neurol; 1989 Jun; 284(2):169-73. PubMed ID: 2754033 [TBL] [Abstract][Full Text] [Related]
7. The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways. Metzner W J Neurosci; 1993 May; 13(5):1862-78. PubMed ID: 8478680 [TBL] [Abstract][Full Text] [Related]
8. Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus. Kawasaki M; Heiligenberg W J Comp Physiol A; 1989 Oct; 165(6):731-41. PubMed ID: 2810147 [TBL] [Abstract][Full Text] [Related]
9. Interruption of pacemaker signals by a diencephalic nucleus in the African electric fish, Gymnarchus niloticus. Zhang Y; Kawasaki M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):509-21. PubMed ID: 16450119 [TBL] [Abstract][Full Text] [Related]
10. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish. Curti S; Falconi A; Morales FR; Borde M J Neurosci; 1999 Oct; 19(20):9133-40. PubMed ID: 10516331 [TBL] [Abstract][Full Text] [Related]
11. Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish. Smith GT; Lu Y; Zakon HH J Comp Neurol; 2000 Jul; 423(3):427-39. PubMed ID: 10870083 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia. Keller CH; Maler L; Heiligenberg W J Comp Neurol; 1990 Mar; 293(3):347-76. PubMed ID: 1691214 [TBL] [Abstract][Full Text] [Related]
13. The structure of the diencephalic prepacemaker nucleus revisited: light microscopic and ultrastructural studies. Zupanc GK; Heiligenberg W J Comp Neurol; 1992 Sep; 323(4):558-69. PubMed ID: 1385493 [TBL] [Abstract][Full Text] [Related]
14. Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors. Spiro JE J Neurophysiol; 1997 Aug; 78(2):835-47. PubMed ID: 9307117 [TBL] [Abstract][Full Text] [Related]
15. Afferent and efferent connections of the diencephalic prepacemaker nucleus in the weakly electric fish, Eigenmannia virescens: interactions between the electromotor system and the neuroendocrine axis. Wong CJ J Comp Neurol; 1997 Jun; 383(1):18-41. PubMed ID: 9184983 [TBL] [Abstract][Full Text] [Related]
16. Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia. Kawasaki M; Heiligenberg W J Comp Physiol A; 1988 Jan; 162(1):13-21. PubMed ID: 3351783 [TBL] [Abstract][Full Text] [Related]
17. Somatostatin-like immunoreactivity in the region of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative analysis. Zupanc GK; Maler L; Heiligenberg W Brain Res; 1991 Sep; 559(2):249-60. PubMed ID: 1724406 [TBL] [Abstract][Full Text] [Related]
18. Distinctive mechanisms underlie the emission of social electric signals of submission in Comas V; Langevin K; Silva A; Borde M J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603 [TBL] [Abstract][Full Text] [Related]
19. Reciprocal connections between the preglomerular nucleus and the central posterior/prepacemaker nucleus in the diencephalon of weakly electric fish, Apteronotus leptorhynchus. Zupanc GK; Horschke I Neuroscience; 1997 Sep; 80(2):653-67. PubMed ID: 9284365 [TBL] [Abstract][Full Text] [Related]
20. The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative ultrastructural study. Zupanc GK J Neurocytol; 1991 Oct; 20(10):818-33. PubMed ID: 1783940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]