BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7908979)

  • 21. Peptidases in the CNS: formation of biologically active, receptor-specific peptide fragments.
    Davis TP; Konings PN
    Crit Rev Neurobiol; 1993; 7(3-4):163-74. PubMed ID: 8221910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of neurotensin by rat brain synaptic membranes. Cleavage at the Pro10-Tyr11 bond by endopeptidase 24.11 (enkephalinase) and a peptidase different from proline-endopeptidase.
    Checler F; Emson PC; Vincent JP; Kitabgi P
    J Neurochem; 1984 Nov; 43(5):1295-301. PubMed ID: 6387047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting of peptide and protein drugs to specific sites in the oral route.
    Bai JP; Chang LL; Guo JH
    Crit Rev Ther Drug Carrier Syst; 1995; 12(4):339-71. PubMed ID: 9501967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of neurotensin by rabbit brain endo-oligopeptidase A and endo-oligopeptidase B (proline-endopeptidase).
    Camargo AC; Caldo H; Emson PC
    Biochem Biophys Res Commun; 1983 Nov; 116(3):1151-9. PubMed ID: 6316969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion.
    Yoshioka M; Erickson RH; Woodley JF; Gulli R; Guan D; Kim YS
    Am J Physiol; 1987 Dec; 253(6 Pt 1):G781-6. PubMed ID: 2827504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specificity of neurotensin metabolism by regional rat brain slices.
    Davis TP; Gillespie TJ; Konings PN
    J Neurochem; 1992 Feb; 58(2):608-17. PubMed ID: 1729405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The intestinal distribution pattern of appetite- and glucose regulatory peptides in mice, rats and pigs.
    Wewer Albrechtsen NJ; Kuhre RE; Toräng S; Holst JJ
    BMC Res Notes; 2016 Feb; 9():60. PubMed ID: 26830025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intestinal assimilation of a proline-containing tetrapeptide. Role of a brush border membrane postproline dipeptidyl aminopeptidase IV.
    Morita A; Chung YC; Freeman HJ; Erickson RH; Sleisenger MH; Kim YS
    J Clin Invest; 1983 Aug; 72(2):610-6. PubMed ID: 6135710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis of branched peptides resistance to enzyme proteolysis.
    Falciani C; Lozzi L; Pini A; Corti F; Fabbrini M; Bernini A; Lelli B; Niccolai N; Bracci L
    Chem Biol Drug Des; 2007 Mar; 69(3):216-21. PubMed ID: 17441908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renal tubular processing of small peptide hormones.
    Carone FA; Peterson DR; Flouret G
    J Lab Clin Med; 1982 Jul; 100(1):1-14. PubMed ID: 7045258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide hydrolases of the human small intestinal mucosa: distribution of activities between brush border membranes and cytosol.
    Sterchi EE; Woodley JF
    Clin Chim Acta; 1980 Mar; 102(1):49-56. PubMed ID: 6993048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digestion and assimilation of proline-containing peptides by rat intestinal brush border membrane carboxypeptidases. Role of the combined action of angiotensin-converting enzyme and carboxypeptidase P.
    Yoshioka M; Erickson RH; Kim YS
    J Clin Invest; 1988 Apr; 81(4):1090-5. PubMed ID: 2832443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution and biosynthesis of aminopeptidase N and dipeptidyl aminopeptidase IV in rat small intestine.
    Miura S; Song IS; Morita A; Erickson RH; Kim YS
    Biochim Biophys Acta; 1983 Nov; 761(1):66-75. PubMed ID: 6139126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of neurotensin degradation by rat brain peptidases.
    McDermott JR; Smith AI; Edwardson JA; Griffiths EC
    Regul Pept; 1982 May; 3(5-6):397-404. PubMed ID: 7051196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced peptide bond pseudopeptide analogues of neurotensin: binding and biological activities, and in vitro metabolic stability.
    Lugrin D; Vecchini F; Doulut S; Rodriguez M; Martinez J; Kitabgi P
    Eur J Pharmacol; 1991 Nov; 205(2):191-8. PubMed ID: 1812009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactivation of atrial natriuretic factor by the renal brush border.
    Olins GM; Spear KL; Siegel NR; Zurcher-Neely HA
    Biochim Biophys Acta; 1987 Jul; 901(1):97-100. PubMed ID: 2954587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptide transport in intestinal and renal brush border membrane vesicles.
    Ganapathy V; Leibach FH
    Life Sci; 1982 Jun; 30(25):2137-46. PubMed ID: 7050578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptidases involved in the catabolism of neurotensin: inhibitor studies using superfused rat hypothalamic slices.
    McDermott JR; Virmani MA; Turner JD; Kidd AM
    Peptides; 1986; 7(2):225-30. PubMed ID: 3526299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification of the main somatostatin-degrading proteases from rat and pig brains, their action on other neuropeptides, and their identification as endopeptidases 24.15 and 24.16.
    Dahms P; Mentlein R
    Eur J Biochem; 1992 Aug; 208(1):145-54. PubMed ID: 1355047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Converting enzyme, kininase and angiotensinase of renal and intestinal brush border.
    Ward PE; Sheridan MS
    Adv Exp Med Biol; 1983; 156 (Pt B)():835-44. PubMed ID: 6305170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.