BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7909146)

  • 21. The catecholaminergic system of the quail brain: immunocytochemical studies of dopamine beta-hydroxylase and tyrosine hydroxylase.
    Bailhache T; Balthazart J
    J Comp Neurol; 1993 Mar; 329(2):230-56. PubMed ID: 8095939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study.
    Bolam JP; Francis CM; Henderson Z
    Neuroscience; 1991; 41(2-3):483-94. PubMed ID: 1678502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunohistochemical localization of cells containing nerve growth factor receptors in the different regions of the adult rat forebrain.
    Kiss J; McGovern J; Patel AJ
    Neuroscience; 1988 Dec; 27(3):731-48. PubMed ID: 2855263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative mapping analyzer for determining the distribution of neurochemicals in the human brain.
    Sutoo D; Akiyama K; Yabe K
    J Neurosci Methods; 1998 Dec; 85(2):161-73. PubMed ID: 9874152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison analysis of distributions of tyrosine hydroxylase, calmodulin and calcium/calmodulin-dependent protein kinase II in a triple stained slice of rat brain.
    Sutoo D; Akiyama K; Yabe K
    Brain Res; 2002 Apr; 933(1):1-11. PubMed ID: 11929630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential regulation of peptide and catecholamine characters in cultured sympathetic neurons.
    Kessler JA
    Neuroscience; 1985 Jul; 15(3):827-39. PubMed ID: 2415873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human striatum: chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer's disease.
    Selden N; Geula C; Hersh L; Mesulam MM
    Neuroscience; 1994 Jun; 60(3):621-36. PubMed ID: 7523983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and topography of neuronal cell populations expressing TNF alpha and IL-1 alpha in response to hippocampal lesion.
    Tchélingérian JL; Le Saux F; Jacque C
    J Neurosci Res; 1996 Jan; 43(1):99-106. PubMed ID: 8838580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Afferents to the basal forebrain cholinergic cell area from pontomesencephalic--catecholamine, serotonin, and acetylcholine--neurons.
    Jones BE; Cuello AC
    Neuroscience; 1989; 31(1):37-61. PubMed ID: 2475819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tyrosine hydroxylase-immunoreactive neurons in the nucleus basalis of the common marmoset (Callithrix jacchus).
    Wisniowski L; Ridley RM; Baker HF; Fine A
    J Comp Neurol; 1992 Nov; 325(3):379-87. PubMed ID: 1280282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative immunohistochemical distributions of tyrosine hydroxylase and calmodulin in the brains of spontaneously hypertensive rats.
    Akiyama K; Yabe K; Sutoo D
    Kitasato Arch Exp Med; 1992 Dec; 65(4):199-208. PubMed ID: 1364239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of choline acetyltransferase immunoreactive somata in the feline brainstem: implications for REM sleep generation.
    Shiromani PJ; Armstrong DM; Berkowitz A; Jeste DV; Gillin JC
    Sleep; 1988 Feb; 11(1):1-16. PubMed ID: 2896380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Four groups of tyrosine hydroxylase-immunoreactive neurons in the ventrolateral medulla of rats, guinea-pigs and cats identified on the basis of chemistry, topography and morphology.
    Halliday GM; McLachlan EM
    Neuroscience; 1991; 43(2-3):551-68. PubMed ID: 1681468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of central cholinergic neurons in the baboon (Papio papio). II. A topographic atlas correlated with catecholamine neurons.
    Satoh K; Fibiger HC
    J Comp Neurol; 1985 Jun; 236(2):215-33. PubMed ID: 4056095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum.
    Pickel VM; Chan J
    J Neurosci Res; 1990 Mar; 25(3):263-80. PubMed ID: 1969969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurotransmitter specificity of cells and fibers in the medial preoptic nucleus: an immunohistochemical study in the rat.
    Simerly RB; Gorski RA; Swanson LW
    J Comp Neurol; 1986 Apr; 246(3):343-63. PubMed ID: 2422228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two types of cholinergic projections to the rat amygdala.
    Hecker S; Mesulam MM
    Neuroscience; 1994 May; 60(2):383-97. PubMed ID: 8072689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons.
    Zaborszky L; Cullinan WE
    J Comp Neurol; 1996 Oct; 374(4):535-54. PubMed ID: 8910734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholinergic neurons in the rat central nervous system demonstrated by in situ hybridization of choline acetyltransferase mRNA.
    Oh JD; Woolf NJ; Roghani A; Edwards RH; Butcher LL
    Neuroscience; 1992; 47(4):807-22. PubMed ID: 1579211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dorsal tegmentum of the pontomesencephalic junction of the rat--immunohistochemistry (choline acetyltransferase, tyrosine hydroxylase, substance P) and NADPH-diaphorase histochemistry in frontal and horizontal sections.
    Nĕmcová V; Petrovický P; ten Donkelaar HJ
    J Hirnforsch; 1997; 38(2):231-41. PubMed ID: 9176735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.