BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7909199)

  • 1. In vivo detection of endogenous acetylcholine release in cat ventricles.
    Akiyama T; Yamazaki T; Ninomiya I
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H854-60. PubMed ID: 7909199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of right and left vagal stimulation on left ventricular acetylcholine levels in the cat.
    Akiyama T; Yamazaki T
    Acta Physiol Scand; 2001 May; 172(1):11-6. PubMed ID: 11437735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node.
    Shimizu S; Akiyama T; Kawada T; Shishido T; Yamazaki T; Kamiya A; Mizuno M; Sano S; Sugimachi M
    Auton Neurosci; 2009 Jun; 148(1-2):44-9. PubMed ID: 19278905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adrenergic inhibition of endogenous acetylcholine release on postganglionic cardiac vagal nerve terminals.
    Akiyama T; Yamazaki T
    Cardiovasc Res; 2000 Jun; 46(3):531-8. PubMed ID: 10912463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo monitoring of acetylcholine release from cardiac vagal nerve endings in anesthetized mice.
    Zhan DY; Du CK; Akiyama T; Sonobe T; Tsuchimochi H; Shimizu S; Kawada T; Shirai M
    Auton Neurosci; 2013 Jun; 176(1-2):91-4. PubMed ID: 23499513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II attenuates myocardial interstitial acetylcholine release in response to vagal stimulation.
    Kawada T; Yamazaki T; Akiyama T; Li M; Zheng C; Shishido T; Mori H; Sugimachi M
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2516-22. PubMed ID: 17644572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of endogenous acetylcholine from a vascularly perfused rat stomach in vitro; inhibition by M3 muscarinic autoreceptors and alpha-2 adrenoceptors.
    Yokotani K; Okuma Y; Nakamura K; Osumi Y
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1190-5. PubMed ID: 7690397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo assessment of acetylcholine-releasing function at cardiac vagal nerve terminals.
    Kawada T; Yamazaki T; Akiyama T; Shishido T; Inagaki M; Uemura K; Miyamoto T; Sugimachi M; Takaki H; Sunagawa K
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H139-45. PubMed ID: 11406478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of vagal efferent axon and nerve terminal function in the postischemic myocardium.
    Kawada T; Yamazaki T; Akiyama T; Mori H; Uemura K; Miyamoto T; Sugimachi M; Sunagawa K
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2687-91. PubMed ID: 12388320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vagal stimulation suppresses ischemia-induced myocardial interstitial norepinephrine release.
    Kawada T; Yamazaki T; Akiyama T; Li M; Ariumi H; Mori H; Sunagawa K; Sugimachi M
    Life Sci; 2006 Jan; 78(8):882-7. PubMed ID: 16125731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation.
    Brack KE; Coote JH; Ng GA
    Cardiovasc Res; 2011 Aug; 91(3):437-46. PubMed ID: 21576131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential acetylcholine release mechanisms in the ischemic and non-ischemic myocardium.
    Kawada T; Yamazaki T; Akiyama T; Sato T; Shishido T; Inagaki M; Takaki H; Sugimachi M; Sunagawa K
    J Mol Cell Cardiol; 2000 Mar; 32(3):405-14. PubMed ID: 10731440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of physostigmine on cholinesterase activity, storage and release of acetylcholine in the isolated chicken heart.
    Dieterich HA; Kaffel H; Kilbinger H; Löffelholz K
    J Pharmacol Exp Ther; 1976 Oct; 199(1):236-46. PubMed ID: 978479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous monitoring of acetylcholine and catecholamine release in the in vivo rat adrenal medulla.
    Akiyama T; Yamazaki T; Mori H; Sunagawa K
    Neurochem Int; 2004 Jun; 44(7):497-503. PubMed ID: 15209418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac vagal control in a knock-in mouse model of dilated cardiomyopathy with a troponin mutation.
    Zhan DY; Du CK; Akiyama T; Morimoto S; Shimizu S; Kawada T; Shirai M; Pearson JT
    Auton Neurosci; 2017 Jul; 205():33-40. PubMed ID: 28344023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagally and acetylcholine-mediated constriction in small pulmonary vessels of rabbits.
    Sada K; Shirai M; Ninomiya I
    J Appl Physiol (1985); 1987 Oct; 63(4):1601-9. PubMed ID: 3693197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vagal control of the pyloric motor function: a physiological and immunohistochemical study in cat and man.
    Edin R
    Acta Physiol Scand Suppl; 1980; 485():1-30. PubMed ID: 6163319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Ca2+ channel antagonists on nerve stimulation-induced and ischemia-induced myocardial interstitial acetylcholine release in cats.
    Kawada T; Yamazaki T; Akiyama T; Uemura K; Kamiya A; Shishido T; Mori H; Sugimachi M
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2187-91. PubMed ID: 16766645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of afferent pathway to vagal nerve stimulation-induced myocardial interstitial acetylcholine release in rats.
    Kawada T; Sonobe T; Nishikawa T; Hayama Y; Li M; Zheng C; Uemura K; Akiyama T; Pearson JT; Sugimachi M
    Am J Physiol Regul Integr Comp Physiol; 2020 Nov; 319(5):R517-R525. PubMed ID: 32903042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medetomidine, an α(2)-adrenergic agonist, activates cardiac vagal nerve through modulation of baroreflex control.
    Shimizu S; Akiyama T; Kawada T; Sata Y; Mizuno M; Kamiya A; Shishido T; Inagaki M; Shirai M; Sano S; Sugimachi M
    Circ J; 2012; 76(1):152-9. PubMed ID: 22040937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.