These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7909396)

  • 41. Effect of 5-HT5A antagonists in animal models of schizophrenia, anxiety and depression.
    Kassai F; Schlumberger C; Kedves R; Pietraszek M; Jatzke C; Lendvai B; Gyertyán I; Danysz W
    Behav Pharmacol; 2012 Aug; 23(4):397-406. PubMed ID: 22785385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antagonism of CRF(2) receptors produces anxiolytic behavior in animal models of anxiety.
    Takahashi LK; Ho SP; Livanov V; Graciani N; Arneric SP
    Brain Res; 2001 Jun; 902(2):135-42. PubMed ID: 11384606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity.
    Hughes J; Boden P; Costall B; Domeney A; Kelly E; Horwell DC; Hunter JC; Pinnock RD; Woodruff GN
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6728-32. PubMed ID: 1975695
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cholecystokinin-induced anxiety in rats: relevance of pre-experimental stress and seasonal variations.
    Kõks S; Männistö PT; Bourin M; Shlik J; Vasar V; Vasar E
    J Psychiatry Neurosci; 2000 Jan; 25(1):33-42. PubMed ID: 10721682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice.
    Mahbod P; Smith EP; Fitzgerald ME; Morano RL; Packard BA; Ghosal S; Scheimann JR; Perez-Tilve D; Herman JP; Tong J
    Endocrinology; 2018 Jan; 159(1):388-399. PubMed ID: 29155981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Do animal models of anxiety predict anxiolytic-like effects of antidepressants?
    Borsini F; Podhorna J; Marazziti D
    Psychopharmacology (Berl); 2002 Sep; 163(2):121-41. PubMed ID: 12202959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Anxiety and the mechanisms of action of anxiolytics].
    Marino A; Costa R
    Recenti Prog Med; 1993 Feb; 84(2):129-41. PubMed ID: 8096650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The anxiolytic-like effect of MCI-225, a selective NA reuptake inhibitor with 5-HT3 receptor antagonism.
    Eguchi J; Inomata Y; Saito K
    Pharmacol Biochem Behav; 2001 Apr; 68(4):677-83. PubMed ID: 11526964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The new generation of serotonergic anxiolytics: possible clinical roles.
    Eison MS
    Psychopathology; 1989; 22 Suppl 1():13-20. PubMed ID: 2567037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Zatosetron. LY 191617, LY 277359.
    Drugs R D; 1999 Oct; 2(4):253-5. PubMed ID: 10659404
    [No Abstract]   [Full Text] [Related]  

  • 51. Possible involvement of the CCK receptor in the benzodiazepine antagonism to CCK in the mouse brain.
    Sugaya K; Matsuda I; Kubota K
    Jpn J Pharmacol; 1987 Jan; 43(1):67-71. PubMed ID: 2883334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [A new group of anxiolytic drugs with a mechanism of action different from that of benzodiazepine derivatives].
    Kostowski W; Płaźnik A
    Pol Tyg Lek; 1988 Dec 19-26; 43(51-52):1647-9, 1683. PubMed ID: 2908340
    [No Abstract]   [Full Text] [Related]  

  • 53. Antistress Effects of Rosa rugosa Thunb. on Total Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Dysfunction in Rat: Possible Mechanism of Action of 5-HT6 Receptor Antagonist.
    Na JR; Oh DR; Han S; Kim YJ; Choi E; Bae D; Oh DH; Lee YH; Kim S; Jun W
    J Med Food; 2016 Sep; 19(9):870-81. PubMed ID: 27331439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of substance P in stress and anxiety responses.
    Ebner K; Singewald N
    Amino Acids; 2006 Oct; 31(3):251-72. PubMed ID: 16820980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cholecystokinin octapeptide induces endogenous opioid-dependent anxiolytic effects in morphine-withdrawal rats.
    Wen D; Sun D; Zang G; Hao L; Liu X; Yu F; Ma C; Cong B
    Neuroscience; 2014 Sep; 277():14-25. PubMed ID: 24993476
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice.
    Kilfoil T; Michel A; Montgomery D; Whiting RL
    Neuropharmacology; 1989 Sep; 28(9):901-5. PubMed ID: 2572995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cholecystokinin and anxiety in normal volunteers: an investigation of the anxiogenic properties of pentagastrin and reversal by the cholecystokinin receptor subtype B antagonist L-365,260.
    Lines C; Challenor J; Traub M
    Br J Clin Pharmacol; 1995 Mar; 39(3):235-42. PubMed ID: 7619662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Animal models of anxiety and the development of novel anxiolytic drugs.
    Sanger DJ; Perrault G; Morel E; Joly D; Zivkovic B
    Prog Neuropsychopharmacol Biol Psychiatry; 1991; 15(2):205-12. PubMed ID: 1678541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The role of monoamin- and acidergic mechanisms of the hippocampus in anxiety states of different origins and their participation in the antiaversive effects of anxiolytics].
    Talalaenko AN; Krivobok GK; Stakhovskiĭ IuV
    Fiziol Zh Im I M Sechenova; 1993 Jan; 79(1):99-104. PubMed ID: 8100168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The possible role of 5-HT(1B/D) receptors in psychiatric disorders and their potential as a target for therapy.
    Moret C; Briley M
    Eur J Pharmacol; 2000 Sep; 404(1-2):1-12. PubMed ID: 10980257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.