These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 7909448)
1. Glycogen degradation by adrenergic agonists and glucagon in periportal and perivenous rat hepatocyte cultures. Tosh D; Agius L Biochim Biophys Acta; 1994 Apr; 1221(3):238-42. PubMed ID: 7909448 [TBL] [Abstract][Full Text] [Related]
2. Studies on the alpha-adrenergic activation of hepatic glucose output. I. Studies on the alpha-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. Hutson NJ; Brumley FT; Assimacopoulos FD; Harper SC; Exton JH J Biol Chem; 1976 Sep; 251(17):5200-8. PubMed ID: 8456 [TBL] [Abstract][Full Text] [Related]
3. Gluconeogenesis in rabbit liver. III. The influences of glucagon, epinephrine, alpha- and beta-adrenergic agents on gluconeogenesis in isolated hepatocytes. Yorek MA; Rufo GA; Ray PD Biochim Biophys Acta; 1980 Nov; 632(4):517-26. PubMed ID: 6254576 [TBL] [Abstract][Full Text] [Related]
4. The influences of glucagon, epinephrine and adrenergic agents on glycogen phosphorylase a and pyruvate kinase activities in hepatocytes from juvenile and adult rabbits. Yorek MA; Blair JB; Ray PD Biochim Biophys Acta; 1982 Jul; 717(1):143-8. PubMed ID: 7104386 [TBL] [Abstract][Full Text] [Related]
5. The influences of glucagon, epinephrine and alpha- and beta-adrenergic agents on glycogenolysis in isolated rabbit hepatocytes and perfused livers. Rufo GA; Yorek MA; Ray PD Biochim Biophys Acta; 1981 May; 674(3):297-305. PubMed ID: 6263353 [TBL] [Abstract][Full Text] [Related]
6. Role of cyclic AMP in the actions of catecholamines on hepatic carbohydrate metabolism. Exton JH; Harper SC Adv Cyclic Nucleotide Res; 1975; 5():519-32. PubMed ID: 165683 [TBL] [Abstract][Full Text] [Related]
7. Metabolic responses of perfused rat livers to alpha- and beta-adrenergic agonists, glucagon and cyclic AMP. Jakob A; Diem S Biochim Biophys Acta; 1975 Sep; 404(1):57-66. PubMed ID: 240432 [TBL] [Abstract][Full Text] [Related]
8. Characterization of glucagon and catecholamine effects on isolated sheep hepatocytes. Morand C; Yacoub C; Remesy C; Demigne C Am J Physiol; 1988 Oct; 255(4 Pt 2):R539-46. PubMed ID: 2459977 [TBL] [Abstract][Full Text] [Related]
9. Desensitization of alpha 1-, beta- and glucagon receptors in rat hepatocytes: influence of ageing. Van Ermen A; Fraeyman N Mech Ageing Dev; 1994 Jul; 75(1):45-58. PubMed ID: 9128753 [TBL] [Abstract][Full Text] [Related]
10. Cyclic AMP and adrenergic receptor control of rat liver glycogen metabolism. Sherline P; Lynch A; Glinsmann WH Endocrinology; 1972 Sep; 91(3):680-90. PubMed ID: 4339328 [No Abstract] [Full Text] [Related]
11. The effect of essential fatty acid deficiency on the adrenergic activation of glycogenolysis in rat hepatocytes. Grojec MS; Ishac EJ; Kapocsi J; Kunos G Arch Biochem Biophys; 1990 Nov; 283(1):34-9. PubMed ID: 2173490 [TBL] [Abstract][Full Text] [Related]
12. Studies on the alpha-andrenergic activation of hepatic glucose output. II. Investigation of the roles of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in the actions of phenylephrine in isolated hepatocytes. Cherrington AD; Assimacopoulos FD; Harper SC; Corbin JD; Park CR; Exton JH J Biol Chem; 1976 Sep; 251(17):5209-18. PubMed ID: 8457 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms involved in catecholamine effect on glycogenolysis in catfish isolated hepatocytes. Brighenti L; Puviani AC; Gavioli ME; Ottolenghi C Gen Comp Endocrinol; 1987 Jun; 66(3):306-13. PubMed ID: 3038668 [TBL] [Abstract][Full Text] [Related]
14. Interaction of glucagon and epinephrine in the regulation of adenosine 3',5'-monophosphate-dependent glycogenolysis in the cultured fetal hepatocyte. Moncany ML; Plas C Endocrinology; 1980 Dec; 107(6):1667-75. PubMed ID: 6253273 [TBL] [Abstract][Full Text] [Related]
15. Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines. Birnbaum MJ; Fain JN J Biol Chem; 1977 Jan; 252(2):528-35. PubMed ID: 188818 [TBL] [Abstract][Full Text] [Related]
16. Hormonal control of glycogenolysis and the mechanism of action of adrenaline in amphibian liver in vitro. Janssens PA; Caine AG; Dixon JE Gen Comp Endocrinol; 1983 Mar; 49(3):477-84. PubMed ID: 6301936 [TBL] [Abstract][Full Text] [Related]
17. Activation of Na(+)- and Ca(2+)-dependent Mg(2+) extrusion by alpha(1)- and beta-adrenergic agonists in rat liver cells. Fagan TE; Romani A Am J Physiol Gastrointest Liver Physiol; 2000 Nov; 279(5):G943-50. PubMed ID: 11052991 [TBL] [Abstract][Full Text] [Related]
18. Emergence of beta adrenergic-responsive hepatic glycogenolysis in male rats during post-maturational aging. Katz MS; McNair CL; Hymer TK; Boland SR Biochem Biophys Res Commun; 1987 Sep; 147(2):724-30. PubMed ID: 2820413 [TBL] [Abstract][Full Text] [Related]
19. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Tosh D; Alberti GM; Agius L Biochem J; 1988 Nov; 256(1):197-204. PubMed ID: 3223900 [TBL] [Abstract][Full Text] [Related]
20. alpha-Adrenergic reduction of cyclic adenosine monophosphate concentrations in rat myocardium. Watanabe AM; Hathaway DR; Besch HR; Farmer BB; Harris RA Circ Res; 1977 Jun; 40(6):596-602. PubMed ID: 15738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]