These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 7909458)
21. Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Sawada H; Suzuki F; Matsuda I; Saitou N J Mol Evol; 1999 Nov; 49(5):627-44. PubMed ID: 10552044 [TBL] [Abstract][Full Text] [Related]
22. Two different classes of avrD alleles occur in pathovars of Pseudomonas syringae. Yucel I; Boyd C; Debnam Q; Keen NT Mol Plant Microbe Interact; 1994; 7(1):131-9. PubMed ID: 8167364 [TBL] [Abstract][Full Text] [Related]
23. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. Rich JJ; Kinscherf TG; Kitten T; Willis DK J Bacteriol; 1994 Dec; 176(24):7468-75. PubMed ID: 8002569 [TBL] [Abstract][Full Text] [Related]
24. Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Kobayashi DY; Tamaki SJ; Keen NT Mol Plant Microbe Interact; 1990; 3(2):94-102. PubMed ID: 2132028 [TBL] [Abstract][Full Text] [Related]
25. Evidence that the Pseudomonas syringae pv. syringae hrp-linked hrmA gene encodes an Avr-like protein that acts in an hrp-dependent manner within tobacco cells. Alfano JR; Klm HS; Delaney TP; Collmer A Mol Plant Microbe Interact; 1997 Jul; 10(5):580-8. PubMed ID: 9204563 [TBL] [Abstract][Full Text] [Related]
26. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Bender CL; Alarcón-Chaidez F; Gross DC Microbiol Mol Biol Rev; 1999 Jun; 63(2):266-92. PubMed ID: 10357851 [TBL] [Abstract][Full Text] [Related]
27. Characterization of the argA gene required for arginine biosynthesis and syringomycin production by Pseudomonas syringae pv. syringae. Lu SE; Soule JD; Gross DC Appl Environ Microbiol; 2003 Dec; 69(12):7273-80. PubMed ID: 14660376 [TBL] [Abstract][Full Text] [Related]
28. Oligonucleotide microarray analysis of the salA regulon controlling phytotoxin production by Pseudomonas syringae pv. syringae. Lu SE; Wang N; Wang J; Chen ZJ; Gross DC Mol Plant Microbe Interact; 2005 Apr; 18(4):324-33. PubMed ID: 15828684 [TBL] [Abstract][Full Text] [Related]
29. The repB gene required for production of extracellular enzymes and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA gene of Pseudomonas syringae. Liao CH; McCallus DE; Wells JM; Tzean SS; Kang GY Can J Microbiol; 1996 Feb; 42(2):177-82. PubMed ID: 8742358 [TBL] [Abstract][Full Text] [Related]
30. Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv. pisi. Arnold DL; Jackson RW; Fillingham AJ; Goss SC; Taylor JD; Mansfield JW; Vivian A Microbiology (Reading); 2001 May; 147(Pt 5):1171-1182. PubMed ID: 11320120 [TBL] [Abstract][Full Text] [Related]
31. Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme. Nagahama K; Yoshino K; Matsuoka M; Sato M; Tanase S; Ogawa T; Fukuda H Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2309-13. PubMed ID: 7952184 [TBL] [Abstract][Full Text] [Related]
32. Interaction Between Nitrogen-Fertilized Peach Trees and Expression of syrB, a Gene Involved in Syringomycin Production in Pseudomonas syringae pv. syringae. Cao T; Duncan RA; McKenry MV; Shackel KA; Dejong TM; Kirkpatrick BC Phytopathology; 2005 May; 95(5):581-6. PubMed ID: 18943325 [TBL] [Abstract][Full Text] [Related]
33. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. Shen H; Keen NT J Bacteriol; 1993 Sep; 175(18):5916-24. PubMed ID: 8376338 [TBL] [Abstract][Full Text] [Related]
34. Characterization of the transcriptional activators SalA and SyrF, Which are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae. Wang N; Lu SE; Records AR; Gross DC J Bacteriol; 2006 May; 188(9):3290-8. PubMed ID: 16621822 [TBL] [Abstract][Full Text] [Related]
35. Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. Sesma A; Sundin GW; Murillo J Microbiology (Reading); 2000 Oct; 146 ( Pt 10)():2375-2384. PubMed ID: 11021914 [TBL] [Abstract][Full Text] [Related]
36. Characterization of plasmids encoding the phytotoxin coronatine in Pseudomonas syringae. Alarcón-Chaidez FJ; Peñaloza-Vázquez A; Ullrich M; Bender CL Plasmid; 1999 Nov; 42(3):210-20. PubMed ID: 10545263 [TBL] [Abstract][Full Text] [Related]
37. Biological and molecular detection of toxic lipodepsipeptide-producing pseudomonas syringae strains and PCR identification in plants. Bultreys A; Gheysen I Appl Environ Microbiol; 1999 May; 65(5):1904-9. PubMed ID: 10223977 [TBL] [Abstract][Full Text] [Related]
38. DNA sequence variation and phylogenetic relationships among strains of Pseudomonas syringae pv. syringae inferred from restriction site maps and restriction fragment length polymorphism. Legard DE; Aquadro CF; Hunter JE Appl Environ Microbiol; 1993 Dec; 59(12):4180-8. PubMed ID: 7904440 [TBL] [Abstract][Full Text] [Related]
39. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. Hutchison ML; Tester MA; Gross DC Mol Plant Microbe Interact; 1995; 8(4):610-20. PubMed ID: 8589416 [TBL] [Abstract][Full Text] [Related]
40. Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Manceau C; Horvais A Appl Environ Microbiol; 1997 Feb; 63(2):498-505. PubMed ID: 9023928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]