BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7909720)

  • 1. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma.
    Walter KA; Cahan MA; Gur A; Tyler B; Hilton J; Colvin OM; Burger PC; Domb A; Brem H
    Cancer Res; 1994 Apr; 54(8):2207-12. PubMed ID: 7909720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable polymers for tirapazamine treatments of experimental intracranial malignant glioma.
    Yuan X; Tabassi K; Williams JA
    Radiat Oncol Investig; 1999; 7(4):218-30. PubMed ID: 10492162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polilactofate microspheres for Paclitaxel delivery to central nervous system malignancies.
    Li KW; Dang W; Tyler BM; Troiano G; Tihan T; Brem H; Walter KA
    Clin Cancer Res; 2003 Aug; 9(9):3441-7. PubMed ID: 12960135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic, implantable polymers for IUdR radiosensitization of experimental human malignant glioma.
    Yuan X; Dillehay LE; Williams JR; Williams JA
    Cancer Biother Radiopharm; 1999 Jun; 14(3):187-202. PubMed ID: 10850303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma.
    Ranganath SH; Wang CH
    Biomaterials; 2008 Jul; 29(20):2996-3003. PubMed ID: 18423584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain.
    Brem H; Tamargo RJ; Olivi A; Pinn M; Weingart JD; Wharam M; Epstein JI
    J Neurosurg; 1994 Feb; 80(2):283-90. PubMed ID: 8283268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas.
    Judy KD; Olivi A; Buahin KG; Domb A; Epstein JI; Colvin OM; Brem H
    J Neurosurg; 1995 Mar; 82(3):481-6. PubMed ID: 7861228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy.
    Wu MP; Tamada JA; Brem H; Langer R
    J Biomed Mater Res; 1994 Mar; 28(3):387-95. PubMed ID: 8077254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantable biodegradable polymers for IUdR radiosensitization of experimental human malignant glioma.
    Williams JA; Dillehay LE; Tabassi K; Sipos E; Fahlman C; Brem H
    J Neurooncol; 1997 May; 32(3):181-92. PubMed ID: 9049879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor radiosensitization by sustained intratumoral release of bromodeoxyuridine.
    Doiron A; Yapp DT; Olivares M; Zhu JX; Lehnert S
    Cancer Res; 1999 Aug; 59(15):3677-81. PubMed ID: 10446981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective radiosensitization of 9L glioma in the brain transduced with double suicide fusion gene.
    Kim JH; Kolozsvary A; Rogulski K; Khil MS; Brown SL; Freytag SO
    Cancer J Sci Am; 1998; 4(6):364-9. PubMed ID: 9853135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstitial delivery of carboplatin via biodegradable polymers is effective against experimental glioma in the rat.
    Olivi A; Ewend MG; Utsuki T; Tyler B; Domb AJ; Brat DJ; Brem H
    Cancer Chemother Pharmacol; 1996; 39(1-2):90-6. PubMed ID: 8995504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat glioma model.
    Kaiser MG; Parsa AT; Fine RL; Hall JS; Chakrabarti I; Bruce JN
    Neurosurgery; 2000 Dec; 47(6):1391-8; discussion 1398-9. PubMed ID: 11126910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors.
    Sipos EP; Tyler B; Piantadosi S; Burger PC; Brem H
    Cancer Chemother Pharmacol; 1997; 39(5):383-9. PubMed ID: 9054951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme.
    Ong BY; Ranganath SH; Lee LY; Lu F; Lee HS; Sahinidis NV; Wang CH
    Biomaterials; 2009 Jun; 30(18):3189-96. PubMed ID: 19285718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain biocompatibility of a biodegradable, controlled-release polymer in rats.
    Tamargo RJ; Epstein JI; Reinhard CS; Chasin M; Brem H
    J Biomed Mater Res; 1989 Feb; 23(2):253-66. PubMed ID: 2708412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel.
    Shikanov A; Vaisman B; Shikanov S; Domb AJ
    J Biomed Mater Res A; 2010 Mar; 92(4):1283-91. PubMed ID: 19343769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain.
    Fung LK; Ewend MG; Sills A; Sipos EP; Thompson R; Watts M; Colvin OM; Brem H; Saltzman WM
    Cancer Res; 1998 Feb; 58(4):672-84. PubMed ID: 9485020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The therapeutic efficacy of conjugated linoleic acid - paclitaxel on glioma in the rat.
    Ke XY; Zhao BJ; Zhao X; Wang Y; Huang Y; Chen XM; Zhao BX; Zhao SS; Zhang X; Zhang Q
    Biomaterials; 2010 Aug; 31(22):5855-64. PubMed ID: 20430438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity.
    Shikanov A; Vaisman B; Krasko MY; Nyska A; Domb AJ
    J Biomed Mater Res A; 2004 Apr; 69(1):47-54. PubMed ID: 14999750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.