These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 7910107)

  • 21. Dopamine D1- and D2-dependent catalepsy in the rat requires functional NMDA receptors in the corpus striatum, nucleus accumbens and substantia nigra pars reticulata.
    Ozer H; Ekinci AC; Starr MS
    Brain Res; 1997 Nov; 777(1-2):51-9. PubMed ID: 9449412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of dextromethorphan on dopamine dependent behaviours in rats.
    Gaikwad RV; Gaonkar RK; Jadhav SA; Thorat VM; Jadhav JH; Balsara JJ
    Indian J Exp Biol; 2007 Aug; 45(8):712-9. PubMed ID: 17877148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic haloperidol-induced changes in regional dopamine release and metabolism and neurotensin content in rats.
    See RE; Lynch AM; Aravagiri M; Nemeroff CB; Owens MJ
    Brain Res; 1995 Dec; 704(2):202-9. PubMed ID: 8788915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced expression of haloperidol conditioned catalepsy in rats by the dopamine D3 receptor antagonists nafadotride and NGB 2904.
    Banasikowski TJ; Beninger RJ
    Eur Neuropsychopharmacol; 2012 Oct; 22(10):761-8. PubMed ID: 22410316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The alpha 2-adrenoceptor antagonist idazoxan reverses catalepsy induced by haloperidol in rats independent of striatal dopamine release: role of serotonergic mechanisms.
    Invernizzi RW; Garavaglia C; Samanin R
    Neuropsychopharmacology; 2003 May; 28(5):872-9. PubMed ID: 12644843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat.
    Cenci MA; Kalén P; Mandel RJ; Björklund A
    Brain Res; 1992 May; 581(2):217-28. PubMed ID: 1393530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory effect of ceruletide on haloperidol-induced catalepsy in rats.
    Ibii N; Ikeda M; Takahara Y; Eigyo M; Akiyoshi T; Matsushita A
    Peptides; 1989; 10(4):779-83. PubMed ID: 2587420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effect of haloperidol on dopamine release and metabolism in caudate putamen and anteromedial frontal cortex using intracerebral dialysis.
    Kurata K; Shibata R
    Pharmacology; 1991; 42(1):1-9. PubMed ID: 2057516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dopamine metabolites and catalepsy after lithium and haloperidol.
    Bowers MB; Rozitis A
    Eur J Pharmacol; 1982 Feb; 78(1):113-5. PubMed ID: 7200429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of presynaptic 5-HT
    Mombereau C; Arnt J; Mørk A
    Pharmacol Biochem Behav; 2017 Feb; 153():141-146. PubMed ID: 28057524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dopamine-acetylcholine link in the caudate-putamen complex which mediates metabolic rate.
    Ho LT; Lin MT
    Metabolism; 1982 Aug; 31(8):791-6. PubMed ID: 7098849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role for presynaptic mechanisms in the actions of nomifensine and haloperidol.
    Garris PA; Budygin EA; Phillips PE; Venton BJ; Robinson DL; Bergstrom BP; Rebec GV; Wightman RM
    Neuroscience; 2003; 118(3):819-29. PubMed ID: 12710989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors.
    Steece-Collier K; Chambers LK; Jaw-Tsai SS; Menniti FS; Greenamyre JT
    Exp Neurol; 2000 May; 163(1):239-43. PubMed ID: 10785463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haloperidol-induced increases in rat amygdaloid dopamine metabolism: evidence for independence from postsynaptic feedback mechanisms.
    Essig EC; Kilpatrick IC
    Neurosci Lett; 1991 Feb; 123(2):261-4. PubMed ID: 2027541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nicotine potentiation of haloperidol-induced catalepsy: striatal mechanisms.
    Sanberg PR; Emerich DF; el-Etri MM; Shipley MT; Zanol MD; Cahill DW; Norman AB
    Pharmacol Biochem Behav; 1993 Oct; 46(2):303-7. PubMed ID: 8265684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ontogeny of tolerance to haloperidol: behavioral and biochemical measures.
    Coyle S; Napier TC; Breese GR
    Brain Res; 1985 Nov; 355(1):27-38. PubMed ID: 4075104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of chronic intermittent haloperidol and raclopride effects on striatal dopamine release and synaptic ultrastructure in rats.
    See RE; Chapman MA; Meshul CK
    Synapse; 1992 Oct; 12(2):147-54. PubMed ID: 1362290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of ionotropic glutamate receptors in caudate-putamen and nucleus accumbens septi of rat brain: comparison of NMDA, AMPA, and kainate receptors.
    Tarazi FI; Campbell A; Yeghiayan SK; Baldessarini RJ
    Synapse; 1998 Oct; 30(2):227-35. PubMed ID: 9723793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute versus chronic haloperidol: relationship between tolerance to catalepsy and striatal and accumbens dopamine, GABA and acetylcholine release.
    Osborne PG; O'Connor WT; Beck O; Ungerstedt U
    Brain Res; 1994 Jan; 634(1):20-30. PubMed ID: 7908848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CB1 cannabinoid receptor-mediated anandamide signaling mechanisms of the inferior colliculus modulate the haloperidol-induced catalepsy.
    Medeiros P; de Freitas RL; Silva MO; Coimbra NC; Melo-Thomas L
    Neuroscience; 2016 Nov; 337():17-26. PubMed ID: 27595886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.