These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7910107)

  • 41. An evaluation of the role of 5-HT(2) receptor antagonism during subchronic antipsychotic drug administration in rats.
    Kruzich PJ; See RE
    Brain Res; 2000 Sep; 875(1-2):35-43. PubMed ID: 10967296
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential effects of morphinan drugs on haloperidol-induced catalepsy in rats: a comparative study with an N-methyl-D-aspartate antagonist.
    Scotti de Carolis A; Popoli P; Pezzola A; Sagratella S
    Arch Int Pharmacodyn Ther; 1991; 310():132-41. PubMed ID: 1685312
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of adenosine and N-methyl-D-aspartate receptors in mediating haloperidol-induced gene expression and catalepsy.
    Chartoff EH; Ward RP; Dorsa DM
    J Pharmacol Exp Ther; 1999 Nov; 291(2):531-7. PubMed ID: 10525068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NMDA and dopamine D2 receptors in the caudate-putamen are not involved in control of motor readiness in rats.
    Hauber W; Giertler C; Bohn I
    Psychopharmacology (Berl); 2001 Apr; 155(1):43-51. PubMed ID: 11374335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Streptozotocin-induced diabetes differentially modifies haloperidol- and gamma-hydroxybutyric acid (GHB)-induced catalepsy.
    Sevak RJ; Koek W; France CP
    Eur J Pharmacol; 2005 Jul; 517(1-2):64-7. PubMed ID: 15975572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Haloperidol conditioned catalepsy in rats: a possible role for D1-like receptors.
    Banasikowski TJ; Beninger RJ
    Int J Neuropsychopharmacol; 2012 Nov; 15(10):1525-34. PubMed ID: 22093169
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of N-methyl-D-aspartate (NMDA) immunoreactivity in residual dendritic spines in the caudate-putamen nucleus after chronic haloperidol administration.
    Rodríguez JJ; Pickel VM
    Synapse; 1999 Sep; 33(4):289-303. PubMed ID: 10421710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined treatment with NMDA antagonist, CGP 37849, and sigma receptor agonists, SA4503 or DTG, decreases the neuroleptic-induced catalepsy in rats.
    Skuza G
    Pol J Pharmacol; 2000; 52(4):313-6. PubMed ID: 11345488
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regional variations in the physiology of the rat caudate-putamen. 2. Effects of amphetamine and amphetamine induced dopamine release on basal and cortical stimulation evoked multiple unit activity.
    Glynn G; Ahmad SO
    J Neural Transm (Vienna); 2003 May; 110(5):461-85. PubMed ID: 12721809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Muscular rigidity and delineation of a dopamine-specific neostriatal subregion: tonic EMG activity in rats.
    Ellenbroek B; Schwarz M; Sontag KH; Jaspers R; Cools A
    Brain Res; 1985 Oct; 345(1):132-40. PubMed ID: 2998546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NMDA receptor antagonists do not block the development of sensitization of catalepsy, but make its expression state-dependent.
    Lanis A; Schmidt WJ
    Behav Pharmacol; 2001 Apr; 12(2):143-9. PubMed ID: 11396519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely-moving rats.
    Imperato A; Honoré T; Jensen LH
    Brain Res; 1990 Oct; 530(2):223-8. PubMed ID: 2176114
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of opioid cataleptic response by cortical frontal deafferentation or intrastriatal injection of NMDA-receptor antagonists.
    Consolo S; Forloni G; Ladinsky H; Palazzi E
    Brain Res; 1988 May; 449(1-2):97-103. PubMed ID: 2899450
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dopamine receptor blockade in nucleus accumbens or caudate nucleus differentially affects feeding induced by 8-OH-DPAT injected into dorsal or median raphe.
    Fletcher PJ
    Brain Res; 1991 Jun; 552(2):181-9. PubMed ID: 1833034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of haloperidol-induced catalepsy in rats by GABAergic neural substrate in the inferior colliculus.
    Tostes JG; Medeiros P; Melo-Thomas L
    Neuroscience; 2013; 255():212-8. PubMed ID: 24125891
    [TBL] [Abstract][Full Text] [Related]  

  • 56. L-type calcium channel blockade on haloperidol-induced c-Fos expression in the striatum.
    Lee J; Rushlow WJ; Rajakumar N
    Neuroscience; 2007 Nov; 149(3):602-16. PubMed ID: 17913375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of dopaminergic receptors within the caudate-putamen complex facilitates reflex bradycardia in the rat.
    Lin MT; Tsay BL; Chen FF
    Jpn J Physiol; 1982; 32(3):431-42. PubMed ID: 7131940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. L-NOARG-induced catalepsy can be influenced by glutamatergic neurotransmission mediated by NMDA receptors in the inferior colliculus.
    Iacopucci AP; Mello RO; Barbosa-Silva R; Melo-Thomas L
    Behav Brain Res; 2012 Oct; 234(2):149-54. PubMed ID: 22749845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anticataleptic 8-OH-DPAT preferentially counteracts with haloperidol-induced Fos expression in the dorsolateral striatum and the core region of the nucleus accumbens.
    Ohno Y; Shimizu S; Imaki J; Ishihara S; Sofue N; Sasa M; Kawai Y
    Neuropharmacology; 2008 Oct; 55(5):717-23. PubMed ID: 18585397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined microdialysis and Fos immunohistochemistry for the estimation of dopamine neurotransmission in the rat caudate-putamen.
    Morelli M; Carboni E; Cozzolino A; Tanda GL; Pinna A; Di Chiara G
    J Neurochem; 1992 Sep; 59(3):1158-60. PubMed ID: 1322970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.