BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7910636)

  • 1. Excitotoxic amino acids cause appearance of magnetic resonance spectroscopy-observable zinc in superfused cortical slices.
    Badar-Goffer R; Morris P; Thatcher N; Bachelard H
    J Neurochem; 1994 Jun; 62(6):2488-91. PubMed ID: 7910636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of N-methyl-D-aspartate on [Ca2+]i and the energy state in the brain by 19F- and 31P-nuclear magnetic resonance spectroscopy.
    Ben-Yoseph O; Bachelard HS; Badar-Goffer RS; Dolin SJ; Morris PG
    J Neurochem; 1990 Oct; 55(4):1446-9. PubMed ID: 2204683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance spectroscopy studies on changes in cerebral calcium and zinc and the energy state caused by excitotoxic amino acids.
    Thatcher NM; Prior MJ; Morris PG; Bachelard HS
    J Neurochem; 1999 Jun; 72(6):2471-8. PubMed ID: 10349857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA) in the measurement of free intracellular calcium in the brain by 19F-nuclear magnetic resonance spectroscopy.
    Badar-Goffer RS; Ben-Yoseph O; Dolin SJ; Morris PG; Smith GA; Bachelard HS
    J Neurochem; 1990 Sep; 55(3):878-84. PubMed ID: 2117051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance spectroscopy studies on Ca2+, Zn2+ and energy metabolism in superfused brain slices.
    Bachelard H; Badar-Goffer R; Morris P; Thatcher N
    Biochem Soc Trans; 1994 Nov; 22(4):988-91. PubMed ID: 7698499
    [No Abstract]   [Full Text] [Related]  

  • 6. Measurement of free intracellular calcium in the brain by 19F-nuclear magnetic resonance spectroscopy.
    Bachelard HS; Badar-Goffer RS; Brooks KJ; Dolin SJ; Morris PG
    J Neurochem; 1988 Oct; 51(4):1311-3. PubMed ID: 3138389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-field MRS studies in brain slices.
    Bachelard H; Morris P; Taylor A; Thatcher N
    Magn Reson Imaging; 1995; 13(8):1223-6. PubMed ID: 8750339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons.
    Frandsen A; Schousboe A
    Proc Natl Acad Sci U S A; 1992 Apr; 89(7):2590-4. PubMed ID: 1372982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA receptor-mediated neurotoxicity: a paradoxical requirement for extracellular Mg2+ in Na+/Ca2+-free solutions in rat cortical neurons in vitro.
    Hartnett KA; Stout AK; Rajdev S; Rosenberg PA; Reynolds IJ; Aizenman E
    J Neurochem; 1997 May; 68(5):1836-45. PubMed ID: 9109508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylmercury-induced elevations in intrasynaptosomal zinc concentrations: an 19F-NMR study.
    Denny MF; Atchison WD
    J Neurochem; 1994 Jul; 63(1):383-6. PubMed ID: 8207443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of excitatory amino acid receptors in K+- and glutamate-evoked release of endogenous adenosine from rat cortical slices.
    Hoehn K; White TD
    J Neurochem; 1990 Jan; 54(1):256-65. PubMed ID: 1967143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors.
    Fink K; Schultheiss R; Göthert M
    Br J Pharmacol; 1992 May; 106(1):67-72. PubMed ID: 1380384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms involved in the metabotropic glutamate receptor-enhancement of NMDA-mediated motoneurone responses in frog spinal cord.
    Holohean AM; Hackman JC; Davidoff RA
    Br J Pharmacol; 1999 Jan; 126(1):333-41. PubMed ID: 10051153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Ca2(+)-mobilizing excitatory amino acid receptors in cultured chick cortical cells.
    McMillian M; Pritchard GA; Miller LG
    Eur J Pharmacol; 1990 Oct; 189(4-5):253-66. PubMed ID: 1980647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia.
    Bickler PE; Gallego SM; Hansen BM
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):811-9. PubMed ID: 8103057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of NMDA-induced protein kinase C translocation by a Zn2+ chelator: implication of intracellular Zn2+.
    Baba A; Etoh S; Iwata H
    Brain Res; 1991 Aug; 557(1-2):103-8. PubMed ID: 1747744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress.
    Sibarov DA; Bolshakov AE; Abushik PA; Krivoi II; Antonov SM
    J Pharmacol Exp Ther; 2012 Dec; 343(3):596-607. PubMed ID: 22927545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 19F nuclear magnetic resonance studies of free calcium in heart cells.
    Gupta RK; Wittenberg BA
    Biophys J; 1993 Dec; 65(6):2547-58. PubMed ID: 8312491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium-dependent inhibition of agonist-stimulated phosphoinositide breakdown in rat cortical slices by excitatory amino acids.
    Lee HM; Fain JN
    J Neurochem; 1992 Sep; 59(3):953-62. PubMed ID: 1322975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of extracellular calcium concentration induced by application of excitatory amino acids in the human neocortex in vitro.
    Lücke A; Köhling R; Straub H; Moskopp D; Wassmann H; Speckmann EJ
    Brain Res; 1995 Feb; 671(2):222-6. PubMed ID: 7538028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.