BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 7911087)

  • 1. The formation of symmetrical GroEL-GroES complexes in the presence of ATP.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    FEBS Lett; 1994 May; 345(2-3):181-6. PubMed ID: 7911087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP.
    Makino Y; Taguchi H; Yoshida M
    FEBS Lett; 1993 Dec; 336(2):363-7. PubMed ID: 7903258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperativity in ATP hydrolysis by GroEL is increased by GroES.
    Gray TE; Fersht AR
    FEBS Lett; 1991 Nov; 292(1-2):254-8. PubMed ID: 1683631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetric complexes of GroE chaperonins as part of the functional cycle.
    Schmidt M; Rutkat K; Rachel R; Pfeifer G; Jaenicke R; Viitanen P; Lorimer G; Buchner J
    Science; 1994 Jul; 265(5172):656-9. PubMed ID: 7913554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy.
    Chen S; Roseman AM; Hunter AS; Wood SP; Burston SG; Ranson NA; Clarke AR; Saibil HR
    Nature; 1994 Sep; 371(6494):261-4. PubMed ID: 7915827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding.
    Martin J; Mayhew M; Langer T; Hartl FU
    Nature; 1993 Nov; 366(6452):228-33. PubMed ID: 7901770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature.
    Mendoza JA; Dulin P; Warren T
    Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of Chromatium vinosum GroEL and GroES proteins overexpressed in Escherichia coli cells lacking the endogenous groESL operon.
    Dionisi HM; Viale AM
    Protein Expr Purif; 1998 Nov; 14(2):275-82. PubMed ID: 9790891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 11. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding.
    Llorca O; Carrascosa JL; Valpuesta JM
    J Biol Chem; 1996 Jan; 271(1):68-76. PubMed ID: 8550627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive cooperativity in the functioning of molecular chaperone GroEL.
    Bochkareva ES; Lissin NM; Flynn GC; Rothman JE; Girshovich AS
    J Biol Chem; 1992 Apr; 267(10):6796-800. PubMed ID: 1348056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity.
    Langer T; Pfeifer G; Martin J; Baumeister W; Hartl FU
    EMBO J; 1992 Dec; 11(13):4757-65. PubMed ID: 1361169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
    Gorovits BM; Ybarra J; Seale JW; Horowitz PM
    J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES.
    Martin J; Geromanos S; Tempst P; Hartl FU
    Nature; 1993 Nov; 366(6452):279-82. PubMed ID: 7901771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding.
    Hayer-Hartl MK; Martin J; Hartl FU
    Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions.
    Behlke J; Ristau O; Schönfeld HJ
    Biochemistry; 1997 Apr; 36(17):5149-56. PubMed ID: 9136876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli chaperonins cpn60 (groEL) and cpn10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase.
    Miller AD; Maghlaoui K; Albanese G; Kleinjan DA; Smith C
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):139-44. PubMed ID: 8097086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GroEL, GroES, and ATP-dependent folding and spontaneous assembly of ornithine transcarbamylase.
    Zheng X; Rosenberg LE; Kalousek F; Fenton WA
    J Biol Chem; 1993 Apr; 268(10):7489-93. PubMed ID: 8096512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.